• Title/Summary/Keyword: Fuzzy logic speed control

Search Result 277, Processing Time 0.021 seconds

A Study on design of Fuzzy neural network Intelligence controller using Evolution Programming (진화프로그래밍을 이용한 퍼지 신경망 지능 제어기 설계에 관한 연구)

  • 이상부;임영도
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.10a
    • /
    • pp.143-153
    • /
    • 1997
  • At the on-line control method FLC(Fuzzy Logic Controller) is stronger to the disturbance than a classical controller and its overshoot of the initialized value is excellent. The fuzzy controller can do a proper control, though it doesn't know the mathematical model of the system or the parameter value. But to make the control rule of the fuzzy controller through an expert's experiance has a changes of the control system, the control rule is fixed, it can't adjust to the environment changes of the control system, the controller output value has a minute error and it can't convergence correctly to the desired value[1][2]. There are many ways to eliminate the minute error[3][4][5], but in this paper suggests EP-FNNIC(Fuzzy Neurla Network Intelligence Controller) intelligence controller which combines FLC with NN(Neural Network) and EP(Evolution Programming). The output characteristics of EP-FNNIC controller will be compared and analyzed with FLC. It will be showed that this EP-FN IC controller converge correctly to the desirable value without any error. The convergence speed, overshoot, rising time, error of steady state of controller of these two kinds also will be compared.

  • PDF

Design of the Call Admission Control System of the ATM Networks Using the Fuzzy Neural Networks (퍼지 신경망을 이용한 ATM망의 호 수락 제어 시스템의 설계)

  • Yoo, Jae-Taek;Kim, Choon-Seop;Kim, Yong-Woo;Kim, Young-Han;Lee, Kwang-Hyung
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.8
    • /
    • pp.2070-2079
    • /
    • 1997
  • In this paper, we proposed the FNCAC (fuzzy neural call admission control) scheme of the ATM networks which used the benefits of fuzzy logic controller and the learning abilities of the neural network to solve the call admission control problems. The new call in ATM networks is connected if QoS(quality of service) of the current calls is not affected due to the connection of a new call. The neural network CAC(call admission control) system is predictable system because the neural network is able to learn by the input/output pattern. We applied the fuzzy inference on the learning rate and momentum constant for improving the learning speed of the fuzzy neural network. The excellence of the proposed algorithm was verified using measurement of learning numbers in the traditional neural network method and fuzzy neural network method by simulation. We found that the learning speed of the FNCAC based on the fuzzy learning rules is 5 times faster than that of the CAC method based on the traditional neural network theory.

  • PDF

Design of a Hybrid Fuzzy Controller for Speed Control of a Hydraulic Elevator Controlled by Inverters (유압식 인버터 엘리베이터의 속도제어를 위한 하이브리드 퍼지제어기의 설계)

  • Han, Gueon-Sang;Kim, Byoung-Hwa;Ahn, Hyun-Sik;Kim, Do-Hyun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.38 no.1
    • /
    • pp.1-13
    • /
    • 2001
  • Due to the friction characteristics of cylinders and the rail of a passenger car, in the elevator actuated with hydraulic systems, there exist dead zones, which can not be controlled by a PID controller. To overcome the drawbacks, in this paper, we first try a hybrid controller which switches between a fuzzy logic controller and a PID controller. However, because the hybrid control scheme uses only a single type controller, except the switched layer, the high control performance can not be achieved. To solve this problem, we propose a new type fuzzy hybrid control scheme, which outputs of the output mixer arc controlled by a fuzzy logic. The hydraulic elevator system controlled by inverters has more then one switched layers due to the highly nonlinear characteristics. The proposed fuzzy hybrid control scheme achieves improved control performances by using both controllers with weighted outputs depend on the system status, to achieve improved control performances. The effectiveness of the proposed control scheme arc shown by simulation results, which the proposed fuzzy hybrid control method yields good control performance not only in the zero crossing speed region but also in the overall control region including steady-state region.

  • PDF

Design of fuzzy speed/phase controller for drum motor in home VCR (VCR용 드럼 모터의 퍼지 속도/위상 제어기 설계)

  • 박귀태;이기상;박태홍;배상욱;이상락
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.457-462
    • /
    • 1991
  • Recently, digital techniques have been applied to servo systems of the home VCR, which result in high accuracy, high stability and a small number of parts required. The servo systems are now becoming more compex because the latest home VCRs are stringly required to have many functions. Given these circumstances, software servo concepts were introduced to the VCR servo system with microprocessor. But there are some difficulties in the conventional digital PID controller, eg. caculating the exact gains or dynamics. In this paper, we introduce FLC(Fuzzy Logic Controller) to the speed/phase control for VCR drum motor. To show the usefulness of the proposed controller, some studies are discussed by simulation and experiment.

  • PDF

A Study on the Efficient Welding Control System using Fuzzy-Neural Algorithm (퍼지-뉴럴 알고리즘을 이용한 효과적인 용접제어스시템에 관한 연구)

  • Kim, Gwon-hyung;Kim, Tae-yeong;Lee, Sang-bae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.10a
    • /
    • pp.189-193
    • /
    • 1997
  • Generally, though we use the vision sensor or arc sensor in welding process, it is difficult to define the welding parameters which can be applied to the weld quality control. Especially, the important parameters is Arc Voltage, Welding Current, Welding Speed in arc welding process and they affect the decision of weld bead shape, the stability of welding process and the decision of weld quality. Therefore, it is difficult to determine the unique relationship between the weld bead geometry and the combination of various welding condition. Due to the various difficulties as mentioned, we intend to use Fuzzy Logic and Neural Network to solve these problems. Therefore, the combination of Fuzzy Logic and Neural network has an effect on removing the weld defects, improving the weld quality and turning the desired weld bead shape. Finally, this system can be used under what kind of welding process adequately and help us make an estimate of the weld bead shape and remove the weld defects.

  • PDF

Realization of Intelligence Controller Using Genetic Algorithm.Neural Network.Fuzzy Logic (유전알고리즘.신경회로망.퍼지논리가 결합된 지능제어기의 구현)

  • Lee Sang-Boo;Kim Hyung-Soo
    • Journal of Digital Contents Society
    • /
    • v.2 no.1
    • /
    • pp.51-61
    • /
    • 2001
  • The FLC(Fuzzy Logic Controller) is stronger to the disturbance and has the excellent characteristic to the overshoot of the initialized value than the classical controller, and also can carry out the proper control being out of all relation to the mathematical model and parameter value of the system. But it has the restriction which can't adopt the environment changes of the control system because of generating the fuzzy control rule through an expert's experience and the fixed value of the once determined control rule, and also can't converge correctly to the desired value because of haying the minute error of the controller output value. Now there are many suggested methods to eliminate the minute error, we also suggest the GA-FNNIC(Genetic Algorithm Fuzzy Neural Network Intelligence Controller) combined FLC with NN(Neural Network) and GA(Genetic Algorithm). In this paper, we compare the suggested GA-FNNIC with FLC and analyze the output characteristics, convergence speed, overshoot and rising time. Finally we show that the GA-FNNIC converge correctly to the desirable value without any error.

  • PDF

Dynamic System Identification Using a Recurrent Compensatory Fuzzy Neural Network

  • Lee, Chi-Yung;Lin, Cheng-Jian;Chen, Cheng-Hung;Chang, Chun-Lung
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.5
    • /
    • pp.755-766
    • /
    • 2008
  • This study presents a recurrent compensatory fuzzy neural network (RCFNN) for dynamic system identification. The proposed RCFNN uses a compensatory fuzzy reasoning method, and has feedback connections added to the rule layer of the RCFNN. The compensatory fuzzy reasoning method can make the fuzzy logic system more effective, and the additional feedback connections can solve temporal problems as well. Moreover, an online learning algorithm is demonstrated to automatically construct the RCFNN. The RCFNN initially contains no rules. The rules are created and adapted as online learning proceeds via simultaneous structure and parameter learning. Structure learning is based on the measure of degree and parameter learning is based on the gradient descent algorithm. The simulation results from identifying dynamic systems demonstrate that the convergence speed of the proposed method exceeds that of conventional methods. Moreover, the number of adjustable parameters of the proposed method is less than the other recurrent methods.

Adaptive Fuzzy-Neuro Controller for High Performance of Induction Motor (유도전동기의 고성능 제어를 위한 적응 퍼지-뉴로 제어기)

  • Choi, Jung-Sik;Nam, Su-Myung;Ko, Jae-Sub;Jung, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.315-320
    • /
    • 2005
  • This paper is proposed adaptive fuzzy-neuro controller for high performance of induction motor drive. The design of this algorithm based on fuzzy-neural network controller that is implemented using fuzzy control and neural network. This controller uses fuzzy rule as training patterns of a neural network. Also, this controller uses the back-propagation method to adjust the weights between the neurons of neural network in order to minimize the error between the command output and actual output. A model reference adaptive scheme is proposed in which the adaptation mechanism is executed by fuzzy logic based on the error and change of nor measured between the motor speed and output of a reference model. The control performance of the adaptive fuzy-neuro controller is evaluated by analysis for various operating conditions. The results of experiment prove that the proposed control system has strong high performance and robustness to parameter variation, and steady-state accuracy and transient response.

  • PDF

High Performance of Induction Motor Drive with HAI Controller (HAI 제어기에 의한 유도전동기 드라이브의 고성능 제어)

  • Nam, Su-Myeong;Ko, Jae-Sub;Choi, Jung-Sik;Chung, Dong-Hwa
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.4
    • /
    • pp.154-157
    • /
    • 2006
  • This paper is proposed hybrid artificial intelligent(HAI) controller for high performance of induction motor drive. The design..of this algorithm based on fuzzy-neural network(FNN) controller that is implemented using fuzzy control and neural network. This controller uses fuzzy rule as training patterns of a neural network. Also, this controller uses the back-propagation method to adjust the weights between the neurons of neural network in order to minimize the error between the command output and actual output. A model reference adaptive scheme is proposed in which the adaptation mechanism is executed by fuzzy logic based on the error and change of error measured between the motor speed and output of a reference model. The control performance of the adaptive FNN controller is evaluated by analysis for various operating conditions. The results of experiment prove that the proposed control system has strong high performance and robustness to parameter variation, and steady-state accuracy and transient response.

A study on the Estimate of Weld Bead Shape and the Compensation of Welding Parameters by Considering Weld Defects in Horizontal Fillet Welding (수평필릿용접시 용접부형상의 예측과 용접결함발생시 적절한 용접변수의 보상에 관한연구)

  • 김관형;이상배
    • Journal of the Korean Institute of Navigation
    • /
    • v.23 no.4
    • /
    • pp.105-114
    • /
    • 1999
  • Generally, though we use the vision sensor or arc sensor in welding process, it is difficult to define the welding parameters which can be applied to the weld quality control. Especially, the important Parameters is Arc Voltage, Welding Current, Welding Speed in arc welding process and they affect the decision of weld bead shape, the stability of welding process and the decision of weld quality. Therefore, it is difficult to determine the unique relationship between the weld bead geometry and the combination of various welding condition. Due to the various difficulties as mentioned, we intend to use Fuzzy Logic and Neural Network to solve these problems. Therefore, the combination of Fuzzy Logic and Neural network has an effect on removing the weld defects, improving the weld quality and turning the desired weld bead shape. Finally, this system can be used under what kind of welding recess adequately and help us make an estimate of the weld bead shape and remove the weld defects.

  • PDF