• 제목/요약/키워드: Fuzzy logic controller design

검색결과 450건 처리시간 0.027초

A Fuzzy Model Based Controller for the Control of Inverted Pendulum

  • Wook Chang;Kwon, Ok-Kook;Joo, Young-Hoon;Park, Jin-Bae
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
    • /
    • pp.459-464
    • /
    • 1998
  • In this paper, we propose a stable fuzzy logic controller architecture for inverted pendulum,. In the design procedure, we represent the fuzzy system as a Takagi-Sugeno fuzzy model and construct a global fuzzy logic controller by considering each local state feedback controller and a supervisory controller, Unlike usual parallel distributed controller, one can design a global stable fuzzy controller without finding a common Lyapunov function by the proposed method. A simulation is performed to control the inverted pendulum to show the effectiveness and feasibility of the proposed fuzzy controller.

  • PDF

PMSM 드라이브의 고성능 제어를 위한 적응 퍼지제어기의 설계 (Design of Adaptive Fuzzy Control for High Performance of PMSM Drive)

  • 정동화;이홍균;이정철
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제53권2호
    • /
    • pp.107-113
    • /
    • 2004
  • This paper develops a adaptive fuzzy controller based fuzzy logic control for high performance of permanent magnet synchronous motor(PMSM) drives. In the proposed system, fuzzy control is used to implement the direct controller as well as the adaptation mechanism. The operation of the direct fuzzy controller and the fuzzy logic based adaptation mechanism is studied. A model reference adaptive scheme is proposed in which the adaptation mechanism is executed by fuzzy logic based on the error and change of error measured between the motor speed and output of a reference model. The control performance of the adaptive fuzzy controller is evaluated by simulation for various operating conditions. The validity of the proposed adaptive fuzzy controller is confirmed by performance results for PMSM drive system.

Comparing type-1, interval and general type-2 fuzzy approach for dealing with uncertainties in active control

  • Farzaneh Shahabian Moghaddam;Hashem Shariatmadar
    • Smart Structures and Systems
    • /
    • 제31권2호
    • /
    • pp.199-212
    • /
    • 2023
  • Nowadays fuzzy logic in control applications is a well-recognized alternative, and this is thanks to its inherent advantages. Generalized type-2 fuzzy sets allow for a third dimension to capture higher order uncertainty and therefore offer a very powerful model for uncertainty handling in real world applications. With the recent advances that allowed the performance of general type-2 fuzzy logic controllers to increase, it is now expected to see the widespread of type-2 fuzzy logic controllers to many challenging applications in particular in problems of structural control, that is the case study in this paper. It should be highlighted that this is the first application of general type-2 fuzzy approach in civil structures. In the following, general type-2 fuzzy logic controller (GT2FLC) will be used for active control of a 9-story nonlinear benchmark building. The design of type-1 and interval type-2 fuzzy logic controllers is also considered for the purpose of comparison with the GT2FLC. The performance of the controller is validated through the computer simulation on MATLAB. It is demonstrated that extra design degrees of freedom achieved by GT2FLC, allow a greater potential to better model and handle the uncertainties involved in the nature of earthquakes and control systems. GT2FLC outperforms successfully a control system that uses T1 and IT2 FLCs.

유전 알고리듬을 이용한 퍼지 제어기의 설계 자동화 및 매개 변수 최적화 (Optimization of Fuzzy Logic Controller Using Genetic Algorithm)

  • 장욱;손유석;주영훈;박진배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 추계학술대회 논문집 학회본부
    • /
    • pp.65-67
    • /
    • 1996
  • This paper presents the automatic construction and parameter optimization technique for the fuzzy logic controller using genetic algorithm. In general the design of fuzzy controller has difficulties in the acquisition of expert's knowledge and relies to a great extent on empirical and heuristic knowledge which, in many cases, cannot be objectively justified. Therefor the performance of the controller can be degraded in the case of plant parameter variations or unpredictable incident which the designer may lave ignored. And fuzzy logic controller parameters elicited form the expert may not be global. Some of these problems can be resolved by application of genetic algorithm. Finally, we provides the second order dead time plant to evaluate the feasibility and generality of our proposed method. Comparison shows that the proposed method can produce a fuzzy logic controller with higher accuracy and a smaller number of fuzzy roles than manually billed fuzzy logic controller.

  • PDF

유압 인버터 엘리베이터에서의 극저속 속도제어를 위한 퍼지논리 제어기의 설계 (Design of a Fuzzy Logic Controller for Zero-crossing Speed Control of a Hydraulic Inverter Elevator)

  • 한권상;김병화;이우철;장태호;이건학;사공석진;안현식;김도현
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1999년도 하계종합학술대회 논문집
    • /
    • pp.777-780
    • /
    • 1999
  • In this paper, a fuzzy logic controller is designed for speed control of a hydraulic inverter elevator. Mathematical modeling of an elevator actuated with hydraulic system is presented and the friction characteristics of a cylinder is examined, which may cause the abrupt increase of the acceleration in the zero-crossing speed region. Simulation results show that the proposed fuzzy logic speed controller yields a better control performance than conventional PID controller.

  • PDF

볼과 빔 제어를 위한 퍼지 뉴론을 갖는 신경망 제어기 설계 (The neural network controller design with fuzzy-neuraon and its application to a ball and beam)

  • 신권석
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1998년도 하계종합학술대회논문집
    • /
    • pp.897-900
    • /
    • 1998
  • Through fuzzy logic controller is very useful to many areas, it is difficult to build up the rule-base by experience and trial-error. So, effective self-tuning fuzzy controller for the position control of ball and beam is designed. In this paper, we developed the neural network control system with fuzzy-neuron which conducts the adjustment process for the parameters to satisfy have nonlinear property of the ball and beam system. The proposed algorithm is based on a fuzzy logic control system using a neural network learinign algorithm which is a back-propagation algorithm. This system learn membership functions with input variables. The purpose of the design is to control the position of the ball along the track by manipulating the angualr position of the serve. As a result, it is concluded that the neural network control system with fuzzy-neuron is more effective than the conventional fuzzy system.

  • PDF

유전알고리즘을 이용한 자기동조 퍼지 제어기의 설계 (Design of Self-Tuning Fuzzy Logic Controllers using Genetic Algorithms)

  • 서재근;김태언;권혁진;김낙교;남문헌
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 B
    • /
    • pp.1374-1376
    • /
    • 1996
  • In this paper We proposed a new method to generate fuzzy logic controllers through genetic algorithm(GA). In designing of fuzzy logic controllers encounters difficulties in the selection of optimized member-ship functions, gains and rule base, which is conventionally achieved by a tedious trial-and-error process. This paper develops genetic algorithms for automatic design of high performance fuzzy logic controllers which can overcome nonlinearities in many engineering control applications. The rule-base is coded in base-7 strings by generated from random function. Which can be presented in discrete fuzzy linguistic value, and using membership function with Gaussian curve. To verify the validity of this fuzzy logic controller it is compared with conventional fuzzy logic controller(FLC) and PID controller.

  • PDF

자기동조 퍼지 PI 제어기의 설계와 응용 (Design and application of self tuning fuzzy PI controller)

  • 이성주;오성권;남의석;황희수;이석진;우광방
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.238-242
    • /
    • 1991
  • This paper presents an approach to self-tuning PI control of dynamic plants, based on fuzzy logic application. A fuzzy logic composed of linguistic conditional statements is employed by defining the relations of input-output variables of the controller. In the synthesis of a fuzzy logic controller, one of the most difficult problem is the selection of linguistic control rules and parameters. To overcome this difficulty, self-tuning fuzzy PI controller (STFPIC) with a hierarchical structure in which the fuzzy PI controller is assigned as the lower level and the rule modification and parameter adjustment as the higher level. The rules and parameters are generated by the adjustment of membership function through performance index(PE). In this paper, the algorithm for of the controller performance is estimated by means of computer simulation.

  • PDF

On the Design of Simple-structured Adaptive Fuzzy Logic Controllers

  • Park, Byung-Jae;Kwak, Seong-Woo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제3권1호
    • /
    • pp.93-99
    • /
    • 2003
  • One of the methods to simplify the design process for a fuzzy logic controller (FLC) is to reduce the number of variables representing the rule antecedent. This in turn decreases the number of control rules, membership functions, and scaling factors. For this purpose, we designed a single-input FLC that uses a sole fuzzy input variable. However, it is still deficient in the capability of adapting some varying operating conditions although it provides a simple method for the design of FLC's. We here design two simple-structured adaptive fuzzy logic controllers (SAFLC's) using the concept of the single-input FLC. Linguistic fuzzy control rules are directly incorporated into the controller by a fuzzy basis function. Thus some parameters of the membership functions characterizing the linguistic terms of the fuzzy control rules can be adjusted by an adaptive law. In our controllers, center values of fuzzy sets are directly adjusted by an adaptive law. Two SAFLC's are designed. One of them uses a Hurwitz error dynamics and the other a switching function of the sliding mode control (SMC). We also prove that 1) their closed-loop systems are globally stable in the sense that all signals involved are bounded and 2) their tracking errors converge to zero asymptotically. We perform computer simulations using a nonlinear plant.

점착력 계수 추정을 이용한 이동 로봇의 퍼지 재점착 제어기 설계 (Design of a Re-adhesion Controller using Fuzzy Logic with Estimated Adhesion Force Coefficient for Wheeled Robot)

  • 권선구;허욱열;김진환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.620-622
    • /
    • 2004
  • Mobility of an indoor wheeled robot is affected by adhesion force that is related to various floor conditions. When the adhesion force between driving wheels and the floor decreases suddenly, the robot has a slip state. In order to overcome this slip problem, optimal slip velocity must be decided for stable movement of wheeled robot. First of all, this paper shows that conventional PI control can not be applied to a wheeled robot of the light weigh. Secondly, reposed fuzzy logic applied by the Takagi-Sugeno model for the configuration of fuzzy sets. For the design of Takaki-Sugeno model and fuzzy rule, proposed algorithm uses FCM(Fuzzy c-mean clustering method) algorithm. In additionally, this algorithm controls recovered driving torque for the restrain the re-slip. The proposed fuzzy logic controller(FLC) is pretty useful with prevention of the slip phenomena through that compare fuzzy with PI control for the controller performance in the re-adhesion control strategy. These procedures are implemented using a Pioneer 2-DXE wheeled robot parameter.

  • PDF