• Title/Summary/Keyword: Fuzzy logic controller design

Search Result 450, Processing Time 0.027 seconds

A Study on Multi-Vehicle Control of Electro Active Polymer Actuator based on Embedded System using Adaptive Fuzzy Controller (Adaptive Fuzzy 제어기를 이용한 Embedded 시스템 기반의 기능성 고분자 구동체의 이중제어에 관한 연구)

  • 김태형;김훈모
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.307-310
    • /
    • 1997
  • In case of environment requiring safety such as human body and requiring flexible shape, a conventional mechanical actuator system does not satisfy requirement. Therefore, in order to solve this problem, a research of various smart material such as EAP (Electro Active Polymer), EAC (Electro Active Ceramic) and SMA (Shape Memory Alloy) is in progress. Recently, the highest preferring material among various smart material is EP (Electrostictive Polymer), because it has very fast response time, poerful force and large displacement. The previous researches have been studied properties of polymer and simple control, but present researches are studied a polymer actuator. An EP (Electostrictive Polymer) actuator has properties which change variably as shape and environmental condition. Therefore, in order to coincide with a user's purpose, it is important not only to decide a shape of actuator and mechanical design but also to investigate a efficient controller. In this paper, we constructed the control logic with an adaptive fuvy algorithm which depends on the physical properties of EP that has a dielectric constant depending on time.

  • PDF

Design of STATCOM Stabiliser for Improving Power System Stability (전력계통 안정도 향상을 위한 STATCOM 안정화 장치 설계)

  • Lee, Seok-Oh;Jung, Young-Min;Mun, Kyeong-Jun;Hwang, Gi-Hyun;Park, June-Ho;Lee, Jeong-Kwan
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.149-151
    • /
    • 2001
  • This paper proposes the design of STATCOM(static synchronous compensator) stabilizer for improving power system stability using fuzzy logic controller(FLC). The STATCOM DC voltage regulator contributes negative damping to the power system as the installation of STATCOM DC voltage regulator. STATCOM stabiliser is superimposed on the AC voltage regulator to compensate the negative damping effect. To evaluate usefulness of the proposed method, we perform the nonlinear simulation on a single-machine infinite bus system. As results of the simulations, the proposed method shows better control performance than PI controller in terms of damping effects.

  • PDF

Dynamic Performance Simulation of Diesel Engine for Underwater Vehicle (수중함용 디젤엔진의 동적 성능 시뮬레이션)

  • 정찬희;양승윤;조상훈;김성용
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.41-51
    • /
    • 2001
  • In this paper, the mathematical modeling and the design of controllers were performed for the dynamic performance simulation of the diesel engine for underwater vehicle. Nonlinear equations are acquired through the mathematical modeling using mean torque production model technique. Three kinds of controllers were designed for the perform simulation of the engine model. As the result of simulation, it was confirmed that each controller can be applied with regard to system characteristics and desired conditions etc.

  • PDF

Intelligent Obstacle Avoidance Algorithm for Autonomous Control of Underwater Flight Vehicle (수중비행체의 자율제어를 위한 지능형 장애물회피 알고리즘)

  • Kim, Hyun-Sik;Jin, Tae-Seok
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.5
    • /
    • pp.635-640
    • /
    • 2009
  • In real system application, the obstacle avoidance system for the autonomous control of the underwater flight vehicle (UFV) operates with the following problems: it has local information because the sonar can only offer the obstacle information in a local detection area, it requires a continuous control input because the system that has reduced acoustic noise and power consumption is necessary, and further, it requires an easy design procedure in terms of its structures and parameters. To solve these problems, an intelligent obstacle avoidance algorithm using the evolution strategy (ES) and the fuzzy logic controller (FLC), is proposed. To verify the performance of the proposed algorithm, the obstacle avoidance of UFV is performed. Simulation results show that the proposed algorithm effectively solves the problems in the real system application.

Fuzzy Modeling of Activated Sludge Process Using Linear Reasoning Method (하수처리 프로세스의 선형 추론 퍼지 모델링)

  • Oh, Sung-Kwun;Park, Jong-Jin;Lee, Seong-Ju;Hwang, Hee-Soo;Kim, Hyun-Ki;Woo, Kwang-Bang
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.417-420
    • /
    • 1990
  • The conventional quantitative techniques of system analysis are intrinsically unsuited for dealing with humanistic systems. Therefore, the rule based modeling of fuzzy linguistic type has been developed for the analysis of humanistic systems and complex systems and it is very significant for analysis and design of fuzzy logic controller. The activated sludge process is a commonly used method for treating sewage and waste waters. A mathematical tool to build a fuzzy model of the activated sludge process where fuzzy implications and linear reasoning are used is presented in here. A root-mean square error is used as the criterion of the fuzzy model's adequacy to the A.S.P. and the least square method is used for the identification of optimum consequence parameters. A method of modeling of the activated sludge process using its input-output data and simulation results for its application are shown.

  • PDF

Robust Gain Scheduling Based on Fuzzy Logic Control and LMI Methods (퍼지논리제어와 LMI기법을 이용한 강인 게인 스케줄링)

  • Chi, Hyo-Seon;Koo, Kuen-Mo;Lee, Hungu;Tahk, Min-Jea;Hong, Sung-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.1
    • /
    • pp.1162-1170
    • /
    • 2001
  • This paper proposes a practical gain-scheduling control law considering robust stability and performance of Linear Parameter Varying(LPV) systems in the presence of nonlinearities and uncertainties. The proposed method introduces LMI-based pole placement synthesis and also associates with a recently developed fuzzy control system based on Takagei-Sugenos fuzzy model. The sufficient conditions for robust controller design of linearized local dynamics and robust stabilization of fuzzy control systems are reduced to a finite set of Linear Matrix inequalities(LMIs) and solved by using co-evolutionary algorithms. The proposed method is applied to the longitudinal acceleration control of high performance aircraft with linear and nonlinear simulations.

  • PDF

PID and Adaptive Controllers for a Transportation Mobile Robot with Fork-Type Lifter

  • Nguyen, Van Vui;Tran, Huu Luat;Kim, Yong-Tae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.3
    • /
    • pp.216-223
    • /
    • 2016
  • This paper proposes a new controller design method for a fork-type lifter (FTL) of a transportation mobile robot. The transportation robot needs to pick up a package from a stack on a storage shelf and move on by a planned path in a logistics center environment. The position of the storage shelf is recognized by reading a QR code on the floor, and using this position, the robot can move to reach the storage shelf and pick up the package. PID controllers and an adaptive controller are designed to control the velocity of two wheels and the position of the FTL. An adaptive controller for the lifter is designed to elevate up and down on a slideway to the correct height position of the package on the stack of the storage shelf. The simulation results show that the PID controllers can respond smoothly to the desired angular velocity and the adaptive controller can adapt quickly and correctly to the desired height.

Parameter Tuning Algorithm for Sliding Mode Control (슬라이딩 모드 제어를 위한 인자 튜닝 알고리듬)

  • 류세희;박장현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.438-442
    • /
    • 2003
  • For an efficient sliding mode control system stability and chattering avoidance should be guaranteed. A continuation method using boundary layer is well known as one solution for this. However since not only model uncertainties and disturbances but also control task itself is variable. it is practically impossible to set controller parameters - control discontinuity, control bandwidth, boundary layer thickness - in advance. In this paper first an adaptation law of control discontinuity is introduced to assure system stability and then fuzzy logic based tuning algorithm of design parameters is applied based on monitored performance indices of tracking error, control chattering, and model precision. In the end maximum control bandwidth not exciting unmodeled dynamics and minimum control discontinuity, boundary layer thickness making system stable and free of chattering are found respectively. This eliminates control chattering and enhances control accuracy as much as possible under given control situation. In order to demonstrate the validity of the proposed algorithm safe headway maintenance control for autonomous transportation system is simulated. The control results show that the proposed algorithm guarantees system stability all the time and tunes control parameters consistently and in consequence implements an efficient control in terms of both accuracy and actuator chattering.

  • PDF

Design of Adaptive Fuzzy Sliding Mode Controller for Chattering Reduction (채터링 감소를 위한 적응 퍼지 슬라이딩 모드 제어기의 설계)

  • Seo, Sam-Jun;Kim, Dong-Won;Park, Gwi-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.6
    • /
    • pp.752-758
    • /
    • 2004
  • In this paper, we proposed an adaptivefuzzy sliding control algorithm using gradient descent method to reduce chattering phenomenon which is viewed in variable control system. In design of FLC, fuzzy control rules are obtained from expert's experience and intuition and it is very difficult to obtain them. We proposed an adaptive algorithm which is updated by consequence part parameter of control rules in order to reduce chattering phenomenon and simultaneously to satistfy the sliding mode condition. The proposed algorithm has the characteristics which are viewed in conventional VSC, e.g. insensitivity to a class of disturbance, parameter variations and uncertainties in the sliding mode. To demonstrate its performance, the proposed control algorithm is applied to an inverted pendulum system. The results show that both alleviation of chattering and performance are achieved.

Structural system simulation and control via NN based fuzzy model

  • Tsai, Pei-Wei;Hayat, T.;Ahmad, B.;Chen, Cheng-Wu
    • Structural Engineering and Mechanics
    • /
    • v.56 no.3
    • /
    • pp.385-407
    • /
    • 2015
  • This paper deals with the problem of the global stabilization for a class of tension leg platform (TLP) nonlinear control systems. It is well known that, in general, the global asymptotic stability of the TLP subsystems does not imply the global asymptotic stability of the composite closed-loop system. Finding system parameters for stabilizing the control system is also an issue need to be concerned. In this paper, we give additional sufficient conditions for the global stabilization of a TLP nonlinear system. In particular, we consider a class of NN based Takagi-Sugeno (TS) fuzzy TLP systems. Using the so-called parallel distributed compensation (PDC) controller, we prove that this class of systems can be globally asymptotically stable. The proper design of system parameters are found by a swarm intelligence algorithm called Evolved Bat Algorithm (EBA). An illustrative example is given to show the applicability of the main result.