• Title/Summary/Keyword: Fuzzy logic controller design

Search Result 450, Processing Time 0.022 seconds

Design of Fuzzy Model Based Controller for Uncertain Nonlinear Systems

  • Wook Chang;Joo, Young-Hoon;Park, Jin-Bae;Guanrong Chen
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.185-189
    • /
    • 1998
  • This paper addresses analysis and design of a fuzzy model-based-controller for the control of uncertain SISO nonlinear systems. In the design procedure, we represent the nonlinear system by using a Takagi-Sugeno fuzzy model and construct a global fuzzy logic controller via parallel distributed compensation and sliding mode control. Unlike other parallel distributed controllers, this globally stable fuzzy controller is designed without finding a common positive definite matrix for a set of Lyapunov equations, and has good tracking performance. The stability analysis is conducted not for the fuzzy model but for the real underlying nonlinear system. Furthermore, the proposed method can be applied to partially known uncertain nonlinear systems. A numerical simulation is performed for the control of an inverted pendulum, to show the effectiveness and feasibility of the proposed fuzzy control method.

  • PDF

Effective and Reliable Speed Control of Permanent Magnet DC (PMDC) Motor under Variable Loads

  • Tuna, Murat;Fidan, Can Bulent;Kocabey, Sureyya;Gorgulu, Sertac
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.2170-2178
    • /
    • 2015
  • This paper presents the effective and reliable speed control of PMDC motors under variable loads and reference speeds. As is known DC motors are more preferred in industrial practices. This is that, the PMDC motors don’t require brush and commutator care and to increase in torque per motor depending on developments in power electronics. In this study, proportional-integral controller (PI) and fuzzy logic controller (FL) have been designed for speed control of PMDC motor. In the design of these controllers, characteristics such as minimum overrun time, response time to the load, settling time and ideal rise time have been taken into consideration for better stability performance. In this design, the best system response was searched by examining the effect of different defuzzification methods onto the fuzzy logic system response. In conclusion, it has been seen that FL controller has a better performance for variable speed-load control of PMDC motor compared to PI controller.

Fuzzy proportional -derivative controller with adaptive control resolution

  • Oh, Seok-Yong;Park, Dong-Jo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.135-137
    • /
    • 1995
  • A new design method is proposed for a fuzzy PD controller. By analyzing phase plane characteristics we can build and optimize the rule base of fuzzy logic controller. Also, a new gain tuning method is used to improve performance in the transient and steady state. The improved performance of the new methodology is shown by an application to the design of control system with a highly nonlinear actuator.

  • PDF

The Tuning Method on Consequence Membership Function of T-S Type FLC (T-S형 퍼지제어기의 후건부 멤버십함수 동조방법)

  • Choi, Han-Soo;Lee, Kyoung-Woong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.3
    • /
    • pp.264-268
    • /
    • 2011
  • This paper presents a Takagi-Sugeno (T-S) type Fuzzy Logic Controller (FLC) with only 3 rules. The choice of parameters of FLC is very difficult job on design FLC. Therefore, the choice of appropriate linguistic variable is an important part of the design of fuzzy controller. However, since fuzzy controller is nonlinear, it is difficult to analyze mathematically the affection of the linguistic variable. So this choice is depend on the expert's experience and trial and error method. In this paper, we propose the method to choose the consequence linear equation's parameter of T-S type FLC. The parameters of consequence linear equations of FLC are tuned according to the system error that is the input of FLC. The full equation of T-S type FLC is presented and using this equation, the relation between output and parameters can represented. The parameters are tuned with gradient algorithm. The parameters are changed depending on output. The simulation results demonstrate the usefulness of this T-S type 3 rule fuzzy controller.

Internal singular configuration analysis and adaptive fuzzy logic control implementatioin for a planar parallel manipulator (평면형 병렬 매니퓰레이터의 내부 특이형상 해석 및 적응 퍼지논리제어 구현)

  • Song, Nak-Yun;Cho, Whang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.1
    • /
    • pp.81-90
    • /
    • 2000
  • Parallel manipulator is suitable for the high precise task because it than has higher stiffness, larger load capacity and more excellent precision, due to the closed-lop structure, than serial manipulator. But the controller design for parallel manipulator is difficult because the parallel manipulator has both the complexity of structure and the interference of actuators. The precision improvement of parallel manipulator using a classical linear control scheme is difficult because the parallel manipulator has the tough nonlinear characteristics. In this paper, firstly, the kinematic analysis of a parallel manipulator used at the experiments is performed so as to show the controllability. The analysis of internal singular configuration of the workspace is performed using the kinematic isotropic index so a sto show the limitation of control performance of a simple linear controller with fixed control gains. Secondly, a control scheme is designed by using an adaptive fuzzy logic controller so that active joints of the parallel manipulator track more precisely the desired input trajectory. This adaptive fuzzy logic controller so that active joints of the parallel manipulator track more precisely the desired input trajectory. This adaptive fuzzy logic controller is often used for the control of nonlinear system because it has both the inference ability and the learning ability. Lastly, the effeciency of designed control scheme is demonstrated by the real-time control experiments with IBM PC interface logic H/W and S/W of my won making. The experimental results was a success.

  • PDF

FAM APPROACH TO DESIGN A FUZZY CONTROLLER

  • Lo Presti, M.;Poluzzi, R.;Rizzotto, G.G.;Zanaboni, A.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1033-1036
    • /
    • 1993
  • Most of the today realized fuzzy logic control applications has been designed using different heuristic approaches for synthesis and implemented with conventional programming languages on general purpose microcontrollers. This paper aims to present a new methodology to design a fuzzy controller. The methodology is based on the Cell-to-Cell approach to extract the control law. A set of fuzzy rules is then found by using a FAM (Fuzzy associative memories) approach. The proposed procedure was implemented to control the rotor position of a DC motor.

  • PDF

A Suggestion of Nonlinear Fuzzy PID Controller to Improve Transient Responses of Nonlinear or Uncertain Systems

  • Kim, Jong-Hwa
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.4
    • /
    • pp.87-100
    • /
    • 1995
  • In order to control systems which contain nonlinearities of uncertainties, control strategies must deal with the effects of them. Since most of control methods based on system mathematical models have been mainly developed focused on stability robustness against nonlinearities or uncertainties under the assumption that controlled systems are linear time invariant, they have certain amount of limitations to smartly improve the transient responses of systems disturbed by nonlinearities or uncertainties. In this paper, a nonlinear fuzzy PID control method is suggested which can stably improve the transient responses of systems disturbed by nonlinearities, as well as systems whose mathematical characteristics are not perfectly known. Although the derivation process is based on the design process similar to general fuzzy logic controller, resultant control law has analytical forms with time varying PID gains rather than linguistic forms, so that implementation using common-used versatile microprocessors cna be achieved easily and effectively in real-time control aspect.

  • PDF

Co-Evolution of Fuzzy Rules and Membership Functions

  • Jun, Hyo-Byung;Joung, Chi-Sun;Sim, Kwee-Bo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.601-606
    • /
    • 1998
  • In this paper, we propose a new design method of an optimal fuzzy logic controller using co-evolutionary concept. In general, it is very difficult to find optimal fuzzy rules by experience when the input and/or output variables are going to increase. Futhermore proper fuzzy partitioning is not deterministic ad there is no unique solution. So we propose a co-evolutionary method finding optimal fuzzy rules and proper fuzzy membership functions at the same time. Predator-Prey co-evolution and symbiotic co-evolution algorithms, typical approaching methods to co-evolution, are reviewed, and dynamic fitness landscape associated with co-evolution is explained. Our algorithm is that after constructing two population groups made up of rule base and membership function, by co-evolving these two populations, we find optimal fuzzy logic controller. By applying the propose method to a path planning problem of autonomous mobile robots when moving objects applying the proposed method to a pa h planning problem of autonomous mobile robots when moving objects exist, we show the validity of the proposed method.

  • PDF

Design of a IA-Fuzzy Precompensated PID Controller for Load Frequency Control of Power Systems (전력시스템의 부하주파수 제어를 위한 IA-Fuzzy 전 보상 PID 제어기 설계)

  • 정형환;이정필;정문규;김창현
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.415-424
    • /
    • 2002
  • In this paper, a robust fuzzy precompensated PID controller using immune algorithm for load frequency control of 2-area power system is proposed. Here, a fuzzy precompensated PID controller is designed as a fuzzy logic based precompensation approach for PID controller. This scheme is easily implemented by adding a fuzzy precompensator to an existing PID controller. We optimize the fuzzy precompensator with an immune algorithm for complementing the demerit such as the difficulty of the component selection of fuzzy controller, namely, scaling factor, membership function and fuzzy rules. Simulation results show that the proposed robust load frequency controller can achieve good performance even in the presence of generation rate constraints.

PI Controller Design for Permanent Magnet Synchronous Motor Drives Using Clustering Fuzzy Algorithm (콜러스터링 퍼지알고리즘을 이용한 영구자석 동기전동기 구동용 PI 제어기 설계)

  • Kwon, Chung-Jin;Han, Woo-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2004.10a
    • /
    • pp.182-184
    • /
    • 2004
  • This paper presents a PI controller tuning method for high performance permanent magnet synchronous motor (PMSM) drives under load variations using clustering fuzzy algorithm. In many speed tracking control systems PI controller has been used due to its simple structure and easy of design. PI controller, however, suffers from the electrical machine parameter variations and disturbances. In order to improve the tracking control performance under load variations, the PI controller parameters are modified during operation by clustering fuzzy method. This method based on optimal fuzzy logic system has simple structure and computational simplicity. It needs only sample data which is obtained by optimal controller off-line. As the sample data implemented in the adaptive fuzzy system can be modified or extended, a flexible control system can be obtained Simulation results show the usefulness of the proposed controller.

  • PDF