• Title/Summary/Keyword: Fuzzy logic application

Search Result 292, Processing Time 0.033 seconds

Design of Fuzzy Logic Controller for an Switched Reluctance Motor Variable Speed Drive (스위치드 릴럭턴스 전동기의 가변속 구동을 위한 퍼지제어기 설계)

  • 최재동;황영성;오성업;성세진
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.3
    • /
    • pp.240-248
    • /
    • 1999
  • This paper presents the application of fuzzy algorithm for speed control of Switched Reluctance Motor. SRM has a h highly nonlinear control characteristic and operates in saturation to maximize the motor torque. A systematic approach t to the modeling of highly nonlinear SRM drive system which includes the fuzzy controller with coarse control and fine C control is presented. PelfOlmance analysis of SRM dJive is reported for a wide range of operating conditions through s speed variation and load perturbation dynamics. The pelfOlmance indices of SRM drive system operating with fuzzy 1 logic controller are compared with the conventional controller to highlight the merits. The expel1mental results are p presented to confilm the validity of proposed fuzzy 10밍c controller.

  • PDF

A new Network Coordinator Node Design Selecting the Optimum Wireless Technology for Wireless Body Area Networks

  • Calhan, Ali;Atmaca, Sedat
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.5
    • /
    • pp.1077-1093
    • /
    • 2013
  • This paper proposes a new network coordinator node design to select the most suitable wireless technology for WBANs by using fuzzy logic. Its goal is to select a wireless communication technology available considering the user/application requirements and network conditions. A WBAN is composed of a set of sensors placed in, on, or around human body, which monitors the human body functions and the surrounding environment. In an effort to send sensor readings from human body to medical center or a station, a WBAN needs to stay connected to a local or a wide area network by using various wireless communication technologies. Nowadays, several wireless networking technologies may be utilized in WLANs and/or WANs each of which is capable of sending WBAN sensor readings to the desired destination. Therefore, choosing the best serving wireless communications technology has critical importance to provide quality of service support and cost efficient connections for WBAN users. In this work, we have developed, modeled, and simulated some networking scenarios utilizing our fuzzy logic-based NCN by using OPNET and MATLAB. Besides, we have compared our proposed fuzzy logic based algorithm with widely used RSSI-based AP selection algorithm. The results obtained from the simulations show that the proposed approach provides appropriate outcomes for both the WBAN users and the overall network.

STUDY OF CORE SUPPORT BARREL VIBRATION MONITORING USING EX-CORE NEUTRON NOISE ANALYSIS AND FUZZY LOGIC ALGORITHM

  • CHRISTIAN, ROBBY;SONG, SEON HO;KANG, HYUN GOOK
    • Nuclear Engineering and Technology
    • /
    • v.47 no.2
    • /
    • pp.165-175
    • /
    • 2015
  • The application of neutron noise analysis (NNA) to the ex-core neutron detector signal for monitoring the vibration characteristics of a reactor core support barrel (CSB) was investigated. Ex-core flux data were generated by using a nonanalog Monte Carlo neutron transport method in a simulated CSB model where the implicit capture and Russian roulette technique were utilized. First and third order beam and shell modes of CSB vibration were modeled based on parallel processing simulation. A NNA module was developed to analyze the ex-core flux data based on its time variation, normalized power spectral density, normalized cross-power spectral density, coherence, and phase differences. The data were then analyzed with a fuzzy logic module to determine the vibration characteristics. The ex-core neutron signal fluctuation was directly proportional to the CSB's vibration observed at 8Hz and15Hzin the beam mode vibration, and at 8Hz in the shell mode vibration. The coherence result between flux pairs was unity at the vibration peak frequencies. A distinct pattern of phase differences was observed for each of the vibration models. The developed fuzzy logic module demonstrated successful recognition of the vibration frequencies, modes, orders, directions, and phase differences within 0.4 ms for the beam and shell mode vibrations.

The Clip Limit Decision of Contrast Limited Adaptive Histogram Equalization for X-ray Images using Fuzzy Logic (퍼지를 이용한 X-ray 영상의 대비제한 적응 히스토그램 평활화 한계점 결정)

  • Cho, Hyunji;Kye, Heewon
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.7
    • /
    • pp.806-817
    • /
    • 2015
  • The contrast limited adaptive histogram equalization(CLAHE) is an advanced method for the histogram equalization which is a common contrast enhancement technique. The CLAHE divides the image into sections, and applies the contrast limited histogram equalization for each section. X-ray images can be classified into three areas: skin, bone, and air area. In clinical application, the interest area is limited to the skin or bone area depending on the diagnosis region. The CLAHE could deteriorate X-ray image quality because the CLAHE enhances the area which doesn't need to be enhanced. In this paper, we propose a new method which automatically determines the clip limit of CLAHE's parameter to improve X-ray image quality using fuzzy logic. We introduce fuzzy logic which is possible to determine clip limit proportional to the interest of users. Experimental results show that the proposed method improve images according to the user's preference by focusing on the subject.

A Fuzzy-Logic Controller for an Electrically Driven Steering System for a Motorcar

  • Lee, Sang-Heon;Kim, Il-Soo;Jayantha katupitiya
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.8
    • /
    • pp.1039-1052
    • /
    • 2002
  • This paper presents an application where a Fuzzy-Logic Controller (FLC) is used at a supervisory level to implement mutual coordination of the steering of the two front wheels of a motorcar. The two front wheels are steered by two independent discrete time state feedback controllers with a view to optimize the steering slip angles. The functions of the two controllers are tied together by way of a FLC. Because of the presence of unmodelled dynamics and disturbances acting on the two sides, it is difficult to achieve the desired performance using conventional control systems. This is the primary reason that FLC is emploged to solve the problem. The results show that the implemented system achieved desired coupling between the two independent systems and thereby reduces the difference between the two steered angles.

Classical Controller with Intelligent Properties for Speed Control of Vector Controlled Induction Motor

  • Salem, Mahmoud M.
    • Journal of Power Electronics
    • /
    • v.8 no.3
    • /
    • pp.210-216
    • /
    • 2008
  • This paper presents a classical speed controller (CSC) for vector controlled induction motors. The controller explores the use of a Fuzzy Logic controller in a classical form. The controller combines the advantages of the classical controller and the properties of intelligent controllers. The Fuzzy Logic controller idea is used to obtain the CSC output equation, whereby the CSC equation is based on the speed error and its change. The CSC parameters are calculated based on the motor mechanical equation and a predefined system performance. Once the CSC parameters are obtained, the defined speed performance can be achieved at all operating conditions. The application of the CSC to control the speed of a vector controlled induction motor is presented. Different induction motor ratings are used. Simulation results in all possible olperating conditions are presented. Results show that the CSC behaves as an expert controller to provide the predefined speed performance in all possible operating conditions. Based on the results obtained in this paper, the CSC is expected to become the ultimate solution for high-performance drives of the next generation.

Application of Lyapunov Theory and Fuzzy Logic to Control Shunt FACTS Devices for Enhancing Transient Stability in Multimachine System

  • Kumkratug, P.
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.5
    • /
    • pp.672-680
    • /
    • 2012
  • This paper proposes the control strategy of the shunt Flexible AC Transmission System (FACTS) devices to improve transient stability in multimachine power system. The multimachine power system has high nonlinear response after severe disturbance. The concept of Lyapunov energy function is applied to derive nonlinear control strategy and it was found that the time derivative of line voltage is not only can apply to control the shunt FACTS devices in multimachine system but also is locally measurable signal. The fuzzy logic control is also applied to overcome the uncertainty of various disturbances in multimachine power system. This paper presents the method of investigating the effect of the shunt FACTS devices on transient stability improvement. The proposed control strategy and the method of simulation are tested on the new England power system. It was found that the shunt FACTS devices based on the proposed nonlinear control strategy can improve transient stability of multimachine power system.

Type-2 Fuzzy Logic Optimum PV/inverter Sizing Ratio for Grid-connected PV Systems: Application to Selected Algerian Locations

  • Makhloufi, S.;Abdessemed, R.
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.6
    • /
    • pp.731-741
    • /
    • 2011
  • Conventional methodologies (empirical, analytical, numerical, hybrid, etc.) for sizing photovoltaic (PV) systems cannot be used when the relevant meteorological data are not available. To overcome this situation, modern methods based on artificial intelligence techniques have been developed for sizing the PV systems. In the present study, the optimum PV/inverter sizing ratio for grid-connected PV systems with orientation due south and inclination angles of $45^{\circ}$ and $60^{\circ}$ in selected Algerian locations was determined in terms of total system output using type-2 fuzzy logic. Because measured data for the locations chosen were not available, a year of synthetic hourly meteorological data for each location generated by the PVSYST software was used in the simulation.

A Path Planning of a Mobile Robot Using the Ultrasonic Sensor and Fuzzy Logic (초음파 센서와 퍼지로직을 이용한 이동로봇의 경로계획)

  • Park, Chang-Soo;Lee, Jong-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.627-629
    • /
    • 1999
  • The research fields of mobile robot consist of three parts. The first is path planning, the second is the application of new sensors, and the last is a combination of the communication technology and mobile robot. In this paper we treat the path-planning. We use a Bayesian probability map, Distance Transform and Fuzzy logic for a path-planning. DT and Fuzzy logic algorithms search for path in entire, continuous free space and unifies global path planning and local path planning. It is efficient and effective method when compared with navigators using traditional approaches.

  • PDF

The Position of an Arago Disk System using Fuzzy Logic Control Technique (퍼지제어 기법을 이용한 아라고 원판 시스템의 위치 제어에 관한 연구)

  • Mun, Sang-Ik;Cho, Yong-Seok;Park, Ki-Heon
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.709-711
    • /
    • 1999
  • In this paper, Fuzzy Logic Controller was Designed for the Degree control of Arago's disk system. Arago's disk system is an application of Arago's disk phenomenon which is the operating principle of induction motor. Since the Arago's disk system varies to stable region. maginally stable region, unstable region according to the degree of bar respectively, it is a sutable system which can be evaluate an efficiency of the system. While an existing controller which was designed using linearized system modeling could control the system on only one operating point, fuzzy logic controller has the advantage in showing good response for multi-operating points because it does not need system modeling.

  • PDF