• 제목/요약/키워드: Fuzzy factor

검색결과 432건 처리시간 0.024초

연속형 퍼지 입력변수를 사용하는 퍼지 제어기의 환산계수 동조 (Scale Factor Tuning of the Fuzzy Controller Using Continuous Fuzzy Input Variables)

  • 임영철;박종건;위석오;정현철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 B
    • /
    • pp.1359-1361
    • /
    • 1996
  • This paper describes a design of real time fuzzy controller using Minimum fuzzy control Rule Selection Method(MRSM). The control algorithm of dynamic systems needs less computation time and memory. To reduce the computation time of fuzzy logic controller, minimum number of rules are to be selected for the fuzzy input variable. The universe of discourse is divided by the number of linguistic labels to allocate the assigned membership function to the fuzzy input variables. In this case, since fuzzy input variables are continuous, scale factor SU is tuned independently. According to increment of SU control surface is improved to adapt the change of system parameter. At this, crisp control surface is increased. With the increament of crisp control surface, fuzzy control surface is reduced. When error state deviates from desirable error state, crisp control surface is more useful than fuzzy control surface for obtaining fast rising time.

  • PDF

FUZZY IDENTIFICATION BY MEANS OF AUTO-TUNING ALGORITHM AND WEIGHTING FACTOR

  • Park, Chun-Seong;Oh, Sung-Kwun;Ahn, Tae-Chon;Pedrycz, Witold
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
    • /
    • pp.701-706
    • /
    • 1998
  • A design method of rule -based fuzzy modeling is presented for the model identification of complex and nonlinear systems. The proposed rule-based fuzzy modeling implements system structure and parameter identification in the efficient form of " IF..., THEN,," statements. using the theories of optimization and linguistic fuzzy implication rules. The improved complex method, which is a powerful auto-tuning algorithm, is used for tuning of parameters of the premise membership functions in consideration of the overall structure of fuzzy rules. The optimized objective function, including the weighting factors, is auto-tuned for better performance of fuzzy model using training data and testing data. According to the adjustment of each weighting factor of training and testing data, we can construct the optimal fuzzy model from the objective function. The least square method is utilized for the identification of optimum consequence parameters. Gas furance and a sewage treatment proce s are used to evaluate the performance of the proposed rule-based fuzzy modeling.

  • PDF

자동 양자이득 조정에 의한 퍼지 제어방식 (Fuzzy Control Method By Automatic Scaling Factor Tuning)

  • 강성호;임중규;엄기환
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 V
    • /
    • pp.2807-2810
    • /
    • 2003
  • In this paper, we propose a fuzzy control method for improving the control performance by automatically tuning the scaling factor. The proposed method is that automatically tune the input scaling factor and the output scaling factor of fuzzy logic system through neural network. Used neural network is ADALINE (ADAptive Linear NEron) neural network with delayed input. ADALINE neural network has simple construct, superior learning capacity and small computation time. In order to verify the effectiveness of the proposed control method, we performed simulation. The results showed that the proposed control method improves considerably on the environment of the disturbance.

  • PDF

오차적분 적용계수를 이용한 PD+I 퍼지제어기 (PD+I Fuzzy Controller Using Error-Accumulating Applying Factor)

  • 전경한;이연정;최봉열
    • 제어로봇시스템학회논문지
    • /
    • 제8권3호
    • /
    • pp.193-198
    • /
    • 2002
  • In this paper, we Propose a PD+I fuzzy controller using an error-accumulating applying factor. In fuzzy control, analytical study was done formerly, in which fuzzy control can be classified by PD type and PI type, and also the study for getting merits of both types was done, too. But the mixed type has a complex structure and many parameters. The proposed fuzzy controller is 2-input 2-out-put and PD type fuzzy control is used as a basic structure. And the proposed controller annihilates a steady-state error and improves transient responses because of using the error-accumulating applying factor which is determined in the real time along the current state of controlled process. Futhermore it is easy to tune the system because of decreasing the number of scaling factors and the I type controller with resetting resolves the integral wind-up problem. Finally we apply the proposed scheme to various plants and show the performance betterment.

향상된 자기동조 퍼지 PID 제어기 (Improved Self-tuning Fuzzy PID Controller)

  • 노재상;이영석;서보혁
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 추계학술대회 논문집 학회본부
    • /
    • pp.338-341
    • /
    • 1994
  • This paper presents a Fuzzy-PID controller based on Fuzzy logic. Up to now PID controller has had the difficulty of obtaining the optimal gain, and Fuzzy controller has had the difficulty of determining scale factor affecting the performance of control. So that a Fuzzy-PID controller is presented here self tuning of the scale factor and optimal gain. The results of simulation show a good performance in comparison with Ziegler-Nichols controller, having the generality of determining the components of scale factor in Fuzzy rule.

  • PDF

Fuzzy Power Factor Control Systems

  • Cho, Seong-Won;Kim, Jae-Min;Jung, Jae-Yoon;Lim, Cheol-Su
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제4권1호
    • /
    • pp.45-49
    • /
    • 2004
  • A method for obtaining the power energy with high quality is to keep the power factor for a load as close to unity as feasible. In this paper, we present a new method to improve the power factor for a load. The proposed method uses fuzzy control techniques in order to determine how many parallel capacitors are to be connected to the load for the correction of the power factor.

Fuzzy-Bayes Fault Isolator Design for BLDC Motor Fault Diagnosis

  • Suh, Suhk-Hoon
    • International Journal of Control, Automation, and Systems
    • /
    • 제2권3호
    • /
    • pp.354-361
    • /
    • 2004
  • To improve fault isolation performance of the Bayes isolator, this paper proposes the Fuzzy-Bayes isolator, which uses the Fuzzy-Bayes classifier as a fault isolator. The Fuzzy-Bayes classifier is composed of the Bayes classifier and weighting factor, which is determined by fuzzy inference logic. The Mahalanobis distance derivative is mapped to the weighting factor by fuzzy inference logic. The Fuzzy-Bayes fault isolator is designed for the BLDC motor fault diagnosis system. Fault isolation performance is evaluated by the experiments. The research results indicate that the Fuzzy-Bayes fault isolator improves fault isolation performance and that it can reduce the transition region chattering that is occurred when the fault is injected. In the experiment, chattering is reduced by about half that of the Bayes classifier's.

부하 주파수 제어를 위한 퍼지 로직 기반 확장 적분 제어 (Fuzzy Logic Based Extended Integral Control for Load Frequency Control)

  • 류헌수;이종기;김석주;김백;문영현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 춘계학술대회 논문집 전력기술부문
    • /
    • pp.210-213
    • /
    • 2001
  • This study presents an effective variable forgetting factor method based on fuzzy logic to suppress frequency droop in extended integral load frequency control. The performance of the extended integral control is greatly dependent on the decaying factor. For an optimal or near optimal performance, it is necessary that the decaying factor as well as the feedback gains should be changed very quickly in response to changes in the system dynamics. However, because of its time-varing characteristic, the optimal decaying factor is difficult to be selected analytically. By adopting fuzzy set theory, the decaying factor can be determined quickly to respond to the variation of the feedback signals. This study builds a fuzzy rule base with use of the change of frequency and its rate as inputs. The computer simulation has been conducted for the single machine system. The simulation results show that the proposed fuzzy 1o81c based controller yields more improved control performance than the conventional PI controller.

  • PDF

PD+I-type fuzzy controller using Simplified Indirect Inference Method

  • Kim, Ji-Hoon;Jeon, Hae-Jin;Chun, Kyung-Han;Park, Bong-Yeol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.179.5-179
    • /
    • 2001
  • Generally, while PD-type fuzzy controller has good performance in transient period, it has uniform steady state error of response. To improve limitations of PD-type fuzzy controller, we propose a new fuzzy controller to improve the performance of transient response and to eliminate the steady state error of response. In this paper, PD-type fuzzy controller is used a simplified indirect inference method(SIIM). When the SIIM is applied, the proposed method has the capability of the high speed inference and adapting with increasing the number of the fuzzy input variables easily. The outputs of this controller are the output calculated by PD-type fuzzy controller and the accumulated error scaling factor. Here, the accumulated error scaling factor is adjusted by fuzzy rule according to the system state variables. To show the usefulness of the proposed controller, it is applied to 0-type 2nd-order linear system.

  • PDF

신경회로망을 이용한 분류모형 개발 (Development of Classification Model Using Neural Network)

  • 박광박;박영만;황승국
    • 한국지능시스템학회논문지
    • /
    • 제18권5호
    • /
    • pp.638-641
    • /
    • 2008
  • 본 논문에서는 데이터를 사전처리 한 후 Fuzzy TAM을 이용하여 분류하는 방법을 개발하였다. 사전 처리 방식은 category형 특성인 경우는 그 특성을 이용하여 문제를 분해시키고, 계량형 특성의 경우는 클래스별 영역을 설정하고 겹치지 않는 특성 영역이 있다면 그 영역의 자료를 고정시켜 분류에서 제외시킨다. 이러한 사전 처리를 한 후 Fuzzy TAM을 이용하여 분류를 수행한다.