Proceedings of the Korean Institute of Intelligent Systems Conference
/
1997.10a
/
pp.45-49
/
1997
In this paper, we controlled a Rotary Inverted Pendulum System using Neuro-Fuzzy Controller(NFC). The inverted pendulum system is widely used as a typical example of an unstable nonlinear control system which is difficult to control. Fuzzy theory have been because membership functions and rules of a fuzzy controller are often given by experts or a fuzzy logic control system. This controller is a feedforward multilayered network which integrates the basic elements and functions of a tradtional fuzzy logic controller into a connectionist structure which has distributed learning abilities. Such NFC can be constructed from training examples by learning rule, and the structure can be trained to develop fuzzy logic rules and find optimal input/output membership functions. Using this controller, we presented the results that controlled a Rotary Inverted Pendulum System and the associated algorithms.
In this paper, a novel self-organizing fuzzy plus PID control algorithm is proposed and analyzed by extensive computer simulations and experiments with an inverted pendulum. Specifically, the proposed self-organizing fuzzy controller consists of a typical fuzzy reasoning part and self organizing part in which both on-line and off-line algorithms are employed to modify the 'then' part of the fuzzy rules and to decide how much fuzzy rules are to be modified after evaluating the control performance, respecfively. And the fuzzy controller is replaced by a PID controller in a prespecified region near by the set point for good settling actions.
Proceedings of the Korean Society for Noise and Vibration Engineering Conference
/
2003.05a
/
pp.1058-1062
/
2003
This paper proposes a self-organizing fuzzy controller (SOFC) design technique applied to the vibration control of a dynamic system under irregular disturbance. In this controller, the fuzzy rules generate control signal continuously using the array of input and output pairs without using any special controller model. The generated rules are saved in the fuzzy rule matrix in real-time by self-organizing methods. This fuzzy logic control is demonstrated by simulation and shows the efficiency of the real-time self-organizing fuzzy controller in this system.
In this paper, the control of the temperature for the vehicle air conditioner is implemented with the fuzzy controller using a micro controller. The linguistic control rules of the fuzzy controller are separated into two out variables(multi input multi output ; MIMO) : one is those for the blower motor, and the other is those for air mix door. The error in fuzzy controller, the input variable is defined as difference between the reference temperature and the actual temperature in the cabin room. The fuzzy control rules are established from the human operator experience, and based engineering knowledge about the process. The method of the center of gravity is utilized for the defuzzification.
The Journal of Korean Institute of Communications and Information Sciences
/
v.18
no.2
/
pp.231-238
/
1993
A rules of fuzzy control is to represent an expert‘s and engineer‘s ambiguous control knowledge of system with some lingustic rules. This rule is very difficult to represent perfectly because expert‘s knowledge is not precise and the rule is not perfect. We propose the fuzzy reasoning and learning to upgrade precision of imperfect rules successively after system running. In the proposed method, the precision of the backward part of a fuzzy rule is improved by back propagation learning method. Also, the method reasons the compatibility degree of the forward part of fuzzy rule by associative memory method. This method this is successfully applied to design auto-parking fuzzy controller in which expert‘s technology and knowledge are required in the limited area.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
1998.06a
/
pp.601-606
/
1998
In this paper, we propose a new design method of an optimal fuzzy logic controller using co-evolutionary concept. In general, it is very difficult to find optimal fuzzy rules by experience when the input and/or output variables are going to increase. Futhermore proper fuzzy partitioning is not deterministic ad there is no unique solution. So we propose a co-evolutionary method finding optimal fuzzy rules and proper fuzzy membership functions at the same time. Predator-Prey co-evolution and symbiotic co-evolution algorithms, typical approaching methods to co-evolution, are reviewed, and dynamic fitness landscape associated with co-evolution is explained. Our algorithm is that after constructing two population groups made up of rule base and membership function, by co-evolving these two populations, we find optimal fuzzy logic controller. By applying the propose method to a path planning problem of autonomous mobile robots when moving objects applying the proposed method to a pa h planning problem of autonomous mobile robots when moving objects exist, we show the validity of the proposed method.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
1993.06a
/
pp.1181-1186
/
1993
In the paper, a new design method of rule-based fuzzy modeling is proposed for model identification of nonlinear systems. The structure indentification is carried out, utilizing fuzzy c-means clustering. Fuzzy-neural networks composed back-propagation algorithm and linear fuzzy inference method, are used to identify parameters of the premise and consequence parts. To obtain optimal linguistic fuzzy implication rules, the learning rates and momentum coefficients are tuned automatically using a modified complex method.
Park, Gee-Yong;Park, Jae-Chang;Kim, Chang-Hwoi;Kim, Jung-So;Jung, Chul-Hwan;Seong, Poong-Hyun
Proceedings of the Korean Nuclear Society Conference
/
1996.11a
/
pp.85-90
/
1996
In this paper, the self-organizing fuzzy logic controller is developed for water level control of steam generator. In comparison with conventional fuzzy logic controllers, this controller performs control task with no control rules at initial and creates control rules as control behavior goes on, and also modifies its control structure when uncertain disturbance is suspected. Selected parameters in the fuzzy logic controller are updated on-line by the gradient descent loaming algorithm based on the performance cost function. This control algorithm is applied to water level control of steam generator model developed by Lee, et al. The computer simulation results confirm good performance of this control algorithm in all power ranges. This control algorithm can be expected to be used for automatic control of feedwater control system in the nuclear power plant with digital instrumentation and control systems.
The Transactions of the Korean Institute of Electrical Engineers
/
v.39
no.7
/
pp.720-728
/
1990
A learning control method is proposed in this paper, using a knowledge base which contains control rules, data, and patterns of the past experience of a plant. The knowledge for plant control is retrieved from measurement data during operation and continually modified after control performance evaluation. A control method is proposed using tinually modified after control performance evaluation. A control method is proposed using fuzzy model of the plant and a recursive statistic decision method of fuzzy subset for control rule generation. Also, the resulting knowledge-based control algorithm has been applied to aprocess and its performance improvement and proper generation of appropriate control rules have been verified.
Kim, Joong-Young;Lee, Dae-Keun;Oh, Sung-Kwun;Jang, Sung-Whan
Proceedings of the KIEE Conference
/
1999.11c
/
pp.588-590
/
1999
In this paper the design method of a fuzzy logic controller with a genetic algorithm is proposed. Fuzzy logic controller is based on linguistic descriptions(in the form of fuzzy IF-THEN rules) from human experts. The auto-tuning method is presented to automatically improve the output performance of controller utilizing the genetic algorithm. The GA algorithm estimates automatically the optimal values of scaling factors and membership function parameters of fuzzy control rules. Controllers are applied to the processes with time-delay and the DC servo motor. Computer simulations are conducted at the step input and the output performances are evaluated in the ITAE.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.