• Title/Summary/Keyword: Fuzzy control rules

Search Result 654, Processing Time 0.027 seconds

An Index of Applicability for the Decomposition of Multivariable Fuzzy Control Rules (제어규칙 분해법에 의한 다변수 퍼지 시스템 제어의 적용기준지수)

  • 이평기;이균경;전기준
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.7
    • /
    • pp.79-86
    • /
    • 1992
  • Recent research on the application of fuzzy set theory to the design of control systems has led to interest in the theory of decomposition of multivariable fuzzy systems. Decomposition of multivariable control rules is preperable since it alleviates the complexity of the problem. However inference error is inevitable because of its approximate nature. In this paper we define an index of applicability which can classify whether the Gupta et. al's method can be applied to multivariable fuzzy system or not. We also propose a modified version of the decomposition which can reduce inference error and improve performance of the system.

  • PDF

A Study on the Hydraulic Turbine Governor using Automatic Tuning Fuzzy Controller (자동 동조 퍼지 제어기를 이용한 수력 발전소 조속기 연구)

  • Lee, Seon-Geun;Lee, Won-Yong;Shin, Dong-Ryul;Kwon, Oh-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.265-268
    • /
    • 1992
  • The control performances of a fuzzy controller depend on its control rules, I/O membership functions, and scaling factors. Scaling factors are very important to adjust control parameters to the process which is to be controlled. For tuning the sealing factors, trial and error method is used in conventional fuzzy controller, which is very difficult and time consuming. This paper proposes a tuning method of scaling factors based on the concept of tuning rules for the conventional Pl controller parameters. The proposed automatic tuning fuzzy controller was evaluated by computer simulations. Good results have been obtained for the small hydro power plant.

  • PDF

Fuzzy Rule Reduction Algorithms and the Reconstruction of Fuzzy System using Decomposition of Nonlinear Functions (비선형 함수의 분해를 이용한 퍼지시스템의 재구성과 퍼지규칙수 줄임 알고리즘)

  • 유병국
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.2
    • /
    • pp.95-102
    • /
    • 2001
  • Fuzzy system is capable of uniformly approximating any nonlinear function over compact input space. The applications of fuzzy system, however, have been primarily limited by the need for large number of fuzzy rules, in particular, for the high-order nonlinear system. In this paper, we propose the reconstruction methods of fuzzy systems, parallel type and cascade, based on the decomposition of some classes of high-order nonlinear functions. Using the both types appropriately, we can reduce the number of fuzzy rules geometrically. It can be applied to the fuzzy system that has an online adaptive structure. Two examples of adaptive fuzzy sliding mode control are shown in the computer simulations to verify the validity of the proposed algorithm.

  • PDF

Design of fuzzy rules for automatically driving car (퍼지 규칙을 이용한 자동운전에 관한 연구)

  • Park, Jong-Su;Lee, H.Y.;Jeong, K.C.;Kim, K.H.
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.122-125
    • /
    • 1997
  • This paper presents a design of fuzzy control rules to driving automobile automatically, three types of road are considered, such types are designated as Z-course, S-course, and Hat-course. Fuzzy control rules are designed for each type by combining human experience and engineering sense. Simulation are done for a mixed road containg three types mentioned above. Simulation results show the validity of suggested algorithm.

  • PDF

The Design of Indirect Adaptive Controller of Chaotic Nonlinear Systems using Fuzzy Neural Networks (퍼지 신경 회로망을 이용한 혼돈 비선형 시스템의 간접 적응 제어기 설계)

  • 류주훈;박진배최윤호
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.437-440
    • /
    • 1998
  • In this paper, the design method of fuzzy neural network(FNN) controller using indirect adaptive control technique is presented for controlling chaotic nonlinear systems. Firstly, the fuzzy model identified with a FNN in off-line process. Secondly, the trained fuzzy model tunes adaptively the control rules of the FNN controller in on-line process. In order to evaluate the proposed control method, Indirect adaptive control method is applied to the representative continuous-time chaotic nonlinear systems, that is, the Duffing system and the Lorenz system. Simulations are done to verify the effectivencess of controller.

  • PDF

Target Tracking Control of vision sensor using Fuzzy Algorithm (퍼지 알고리즘을 이용한 비젼 센서의 목표물 추적 제어)

  • Lee, Hong-Hee;Han, Jin-Young
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.583-586
    • /
    • 1995
  • In this paper, a nor fuzzy control algorithm for the target tracking system is proposed, and its characteristics are analyzed and compared with those of the traditional PID controller. Fuzzy rules are generated experimentally using Mamdani's minimum operation and the center of area method. The experimental results prove that the proposed fuzzy algorithm is excellent in our tracking system and its performance is superior to that of the PID controller.

  • PDF

Controller Design Using a Fuzzy Theory and Genetic Algorithm (퍼지이론과 유전알고리즘의 합성에 의한 제어기설계)

  • Oh, Jong-In;Lee, Kee-Seong
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.645-647
    • /
    • 1998
  • A position control algorithm for a inverted pendulum is studied. The proposed algorithm is based on a fuzzy theory and a steady state genetic algorithm(SSGA). The conventional fuzzy methods need expert's knowledges or human experiences. The SSGA, which is a optimization algorithm, tunes the input-output membership parameters and fuzzy rules automatically. The computer simulation to control a inverted pendulum is presented to illustrate the approaches.

  • PDF

An Indoor Positioning System for Mobile Robots Using Visible Light Communication and Fuzzy Logic (가시광 통신과 퍼지 논리를 이용한 모바일 로봇의 실내 위치 인식 시스템)

  • Kim, Jun-Young;Kim, Ji-Su;Kang, Geun-Taek;Lee, Won-Chang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.2
    • /
    • pp.75-82
    • /
    • 2016
  • Visible light communication (VLC) using LED lamps is suitable for implementing an indoor positioning system in an indoor environment where the global positioning system (GPS) signal does not reach. In this paper, we present an indoor positioning system for mobile robots using a VLC beacon and fuzzy rules. This system consists of an autonomous mobile robot, VLC modules, and device application software. Fuzzy rules are applied to plan the global and local paths along which the mobile robot navigates indoors. The VLC transmitter modules are attached to the wall or the ceiling as beacons to transmit their own location information. The variable pulse position modulation (VPPM) algorithm is used to transmit data, which is a new modulation scheme for VLC providing a dimming control mechanism for flicker-free optical communication. The mobile robot has a receiver module to receive the location information while performing its mission in the environment where VLC transmitters are deployed.

Fuzzy Control Through Singularity (특이성에 대한 퍼지 제어)

  • 이혜린;정정주
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.356-356
    • /
    • 2000
  • For irregular nonlinear systems, switching controlk form is proposed recently. This control law is designed to overcome the singularities through the scheme that switches between an approximate tracking law close to the singularities, and an exact tracking law away from the singularities. But, that form has problems which may break the system's stability through unstable control input value at switching procedure. In this paper, We propose new switching control law which supervises approximate tracking control law and exact tracking control law by fuzzy rules to overcome unstability problem in switching procedure.

  • PDF

Design of Optimal Fuzzy Logic based PI Controller using Multiple Tabu Search Algorithm for Load Frequency Control

  • Pothiya Saravuth;Ngamroo Issarachai;Runggeratigul Suwan;Tantaswadi Prinya
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.2
    • /
    • pp.155-164
    • /
    • 2006
  • This paper focuses on a new optimization technique of a fuzzy logic based proportional integral (FLPI) load frequency controller by the multiple tabu search (MTS) algorithm. Conventionally, the membership functions and control rules of fuzzy logic control are obtained by trial and error method or experiences of designers. To overcome this problem, the MTS algorithm is proposed to simultaneously tune proportional integral gains, the membership functions and control rules of a FLPI load frequency controller in order to minimize the frequency deviations of the interconnected power system against load disturbances. The MTS algorithm introduces additional techniques for improvement of the search process such as initialization, adaptive search, multiple searches, crossover and restart process. Simulation results explicitly show that the performance of the proposed FLPI controller is superior to conventional PI and FLPI controllers in terms of overshoot and settling time. Furthermore, the robustness of the proposed FLPI controller under variation of system parameters and load change are higher than that of conventional PI and FLPI controllers.