• Title/Summary/Keyword: Fuzzy c-means Clustering Method

Search Result 180, Processing Time 0.031 seconds

Automatic Generation of Fuzzy Rules using the Fuzzy-Neural Networks

  • Ahn, Taechon;Oh, Sungkwun;Woo, Kwangbang
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1181-1186
    • /
    • 1993
  • In the paper, a new design method of rule-based fuzzy modeling is proposed for model identification of nonlinear systems. The structure indentification is carried out, utilizing fuzzy c-means clustering. Fuzzy-neural networks composed back-propagation algorithm and linear fuzzy inference method, are used to identify parameters of the premise and consequence parts. To obtain optimal linguistic fuzzy implication rules, the learning rates and momentum coefficients are tuned automatically using a modified complex method.

  • PDF

A Study on Effective Selection of University Lecture Evaluation (대학 강의평가에서 문항 추출에 관한 연구)

  • Hwang Se-Myung;Kim In-Taek
    • Journal of Engineering Education Research
    • /
    • v.8 no.1
    • /
    • pp.31-45
    • /
    • 2005
  • In this paper, selecting survey items was performed using three clustering methods: factor analysis, fuzzy c-Means algorithm and cluster analysis. The methods were used to extract key items from various questionnaires. The key item represents several similar questionnaires that form a cluster. Test survey was made of 120 items obtained from several surveys and it was answered by 646 students from 4 universities. Each item contains 6 choices. Applying the clustering method chose 25 items which is reduced from the original 120 items. The results yielded by three methods are very similar.

Quantization of Lumbar Muscle using FCM Algorithm (FCM 알고리즘을 이용한 요부 근육 양자화)

  • Kim, Kwang-Baek
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.8
    • /
    • pp.27-31
    • /
    • 2013
  • In this paper, we propose a new quantization method using fuzzy C-means clustering(FCM) for lumbar ultrasound image recognition. Unlike usual histogram based quantization, our method first classifies regions into 10 clusters and sorts them by the central value of each cluster. Those clusters are represented with different colors. This method is efficient to handle lumbar ultrasound image since in this part of human body, the brightness values are distributed to doubly skewed histogram in general thus the usual histogram based quantization is not strong to extract different areas. Experiment conducted with 15 real lumbar images verified the efficacy of proposed method.

Nonlinear System Modeling Using Genetic Algorithm and FCM-basd Fuzzy System (유전알고리즘과 FCM 기반 퍼지 시스템을 이용한 비선형 시스템 모델링)

  • 곽근창;이대종;유정웅;전명근
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.6
    • /
    • pp.491-499
    • /
    • 2001
  • In this paper, the scheme of an efficient fuzzy rule generation and fuzzy system construction using GA(genetic algorithm) and FCM(fuzzy c-means) clustering algorithm is proposed for TSK(Takagi-Sugeno-Kang) type fuzzy system. In the structure identification, input data is transformed by PCA(Principal Component Analysis) to reduce the correlation among input data components. And then, a set fuzzy rules are generated for a given criterion by FCM clustering algorithm . In the parameter identification premise parameters are optimally searched by GA. On the other hand, the consequent parameters are estimated by RLSE(Recursive Least Square Estimate) to reduce the search space. From this one can systematically obtain the valid number of fuzzy rules which shows satisfying performance for the given problem. Finally, we applied the proposed method to the Box-Jenkins data and rice taste data modeling problems and obtained a better performance than previous works.

  • PDF

An Improved Automated Spectral Clustering Algorithm

  • Xiaodan Lv
    • Journal of Information Processing Systems
    • /
    • v.20 no.2
    • /
    • pp.185-199
    • /
    • 2024
  • In this paper, an improved automated spectral clustering (IASC) algorithm is proposed to address the limitations of the traditional spectral clustering (TSC) algorithm, particularly its inability to automatically determine the number of clusters. Firstly, a cluster number evaluation factor based on the optimal clustering principle is proposed. By iterating through different k values, the value corresponding to the largest evaluation factor was selected as the first-rank number of clusters. Secondly, the IASC algorithm adopts a density-sensitive distance to measure the similarity between the sample points. This rendered a high similarity to the data distributed in the same high-density area. Thirdly, to improve clustering accuracy, the IASC algorithm uses the cosine angle classification method instead of K-means to classify the eigenvectors. Six algorithms-K-means, fuzzy C-means, TSC, EIGENGAP, DBSCAN, and density peak-were compared with the proposed algorithm on six datasets. The results show that the IASC algorithm not only automatically determines the number of clusters but also obtains better clustering accuracy on both synthetic and UCI datasets.

A Fuzzy Clustering Method based on Genetic Algorithm

  • Jo, Jung-Bok;Do, Kyeong-Hoon;Linhu Zhao;Mitsuo Gen
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.1025-1028
    • /
    • 2000
  • In this paper, we apply to a genetic algorithm for fuzzy clustering. We propose initialization procedure and genetic operators such as selection, crossover and mutation, which are suitable for solving the problems. To illustrate the effectiveness of the proposed algorithm, we solve the manufacturing cell formation problem and present computational comparisons to generalized Fuzzy c-Means algorithm.

  • PDF

Hybird Identification of IG baed Fuzzy Model (정보 입자 기반 퍼지 모델의 하이브리드 동정)

  • Park, Keon-Jun;Lee, Dong-Yoon;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2885-2887
    • /
    • 2005
  • We introduce a hybrid identification of information granulation(IG)-based fuzzy model to carry out the model identification of complex and nonlinear systems. To optimally design the IG-based fuzzy model we exploit a hybrid identification through genetic alrogithms(GAs) and Hard C-Means (HCM) clustering. An initial structure of fuzzy model is identified by determining the number of input, the seleced input variables, the number of membership function, and the conclusion inference type by means of GAs. Granulation of information data with the aid of HCM clustering help determine the initial paramters of fuzzy model such as the initial apexes of the membership functions and the initial values of polyminial functions being used in the premise and consequence part of the fuzzy rules. And the inital parameters are tuned effectively with the aid of the GAs and the least square method. Numerical example is included to evaluate the performance of the proposed model.

  • PDF

Comparison of Classification Rate Between BP and ANFIS with FCM Clustering Method on Off-line PD Model of Stator Coil

  • Park Seong-Hee;Lim Kee-Joe;Kang Seong-Hwa;Seo Jeong-Min;Kim Young-Geun
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.5C no.3
    • /
    • pp.138-142
    • /
    • 2005
  • In this paper, we compared recognition rates between NN(neural networks) and clustering method as a scheme of off-line PD(partial discharge) diagnosis which occurs at the stator coil of traction motor. To acquire PD data, three defective models are made. PD data for classification were acquired from PD detector. And then statistical distributions are calculated to classify model discharge sources. These statistical distributions were applied as input data of two classification tools, BP(Back propagation algorithm) and ANFIS(adaptive network based fuzzy inference system) pre-processed FCM(fuzzy c-means) clustering method. So, classification rate of BP were somewhat higher than ANFIS. But other items of ANFIS were better than BP; learning time, parameter number, simplicity of algorithm.

Movement Intention Detection of Human Body Based on Electromyographic Signal Analysis Using Fuzzy C-Means Clustering Algorithm (인체의 동작의도 판별을 위한 퍼지 C-평균 클러스터링 기반의 근전도 신호처리 알고리즘)

  • Park, Kiwon;Hwang, Gun-Young
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.1
    • /
    • pp.68-79
    • /
    • 2016
  • Electromyographic (EMG) signals have been widely used as motion commands of prosthetic arms. Although EMG signals contain meaningful information including the movement intentions of human body, it is difficult to predict the subject's motion by analyzing EMG signals in real-time due to the difficulties in extracting motion information from the signals including a lot of noises inherently. In this paper, four Ag/AgCl electrodes are placed on the surface of the subject's major muscles which are in charge of four upper arm movements (wrist flexion, wrist extension, ulnar deviation, finger flexion) to measure EMG signals corresponding to the movements. The measured signals are sampled using DAQ module and clustered sequentially. The Fuzzy C-Means (FCMs) method calculates the center values of the clustered data group. The fuzzy system designed to detect the upper arm movement intention utilizing the center values as input signals shows about 90% success in classifying the movement intentions.

Recognition and Tracking of Moving Objects Using Label-merge Method Based on Fuzzy Clustering Algorithm (퍼지 클러스터링 알고리즘 기반의 라벨 병합을 이용한 이동물체 인식 및 추적)

  • Lee, Seong Min;Seong, Il;Joo, Young Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.2
    • /
    • pp.293-300
    • /
    • 2018
  • We propose a moving object extraction and tracking method for improvement of animal identification and tracking technology. First, we propose a method of merging separated moving objects into a moving object by using FCM (Fuzzy C-Means) clustering algorithm to solve the problem of moving object loss caused by moving object extraction process. In addition, we propose a method of extracting data from a moving object and a method of counting moving objects to determine the number of clusters in order to satisfy the conditions for performing FCM clustering algorithm. Then, we propose a method to continuously track merged moving objects. In the proposed method, color histograms are extracted from feature information of each moving object, and the histograms are continuously accumulated so as not to react sensitively to noise or changes, and the average is obtained and stored. Thereafter, when a plurality of moving objects are overlapped and separated, the stored color histogram is compared with each other to correctly recognize each moving object. Finally, we demonstrate the feasibility and applicability of the proposed algorithms through some experiments.