• Title/Summary/Keyword: Fuzzy c-Means clustering

Search Result 310, Processing Time 0.028 seconds

Overall Analysis of Competitiveness of Asian Major Ports Using the Hybrid Mechanism of FCM and AHP (FCM법과 AHP법을 융합한 아시아 주요항만의 경쟁력에 관한 종합적 분석에 관한 연구)

  • Lee, Hong-Girl
    • Journal of Navigation and Port Research
    • /
    • v.27 no.2
    • /
    • pp.185-191
    • /
    • 2003
  • The aim of this research is to overall analyze/classify characteristics of Asian major ports. To achieve this aim, we firstly pointed out critical problems on research methodology and research scope which most of previous research have, from related literature review. In order to overcome those problems, major ports in A냠 were selected by the objective indicators, and both algorithms of AHP(Analytic Hierarchical Process) and FCM(Fuzzy C-Means) that revise weakness in previous clustering method were used. Through these hybrid approach, it were found that only 10 ports of 16 major Asian ports had their own phases in Asian major ports. Those 10 ports were classified into 6 port groups, and also membership degree of each port within the 4 port groups and ranking of each ports seer analyzed. Finally, based on results of these analysis, present status and future direction of Busan port were discussed.

Multi-level Thresholding using Fuzzy Clustering Algorithm in Local Entropy-based Transition Region (지역적 엔트로피 기반 전이 영역에서 퍼지 클러스터링 알고리즘을 이용한 Multi-Level Thresholding)

  • Oh, Jun-Taek;Kim, Bo-Ram;Kim, Wook-Hyun
    • The KIPS Transactions:PartB
    • /
    • v.12B no.5 s.101
    • /
    • pp.587-594
    • /
    • 2005
  • This paper proposes a multi-level thresholding method for image segmentation using fuzzy clustering algorithm in transition region. Most of threshold-based image segmentation methods determine thresholds based on the histogram distribution of a given image. Therefore, the methods have difficulty in determining thresholds for real-image, which has a complex and undistinguished distribution, and demand much computational time and memory size. To solve these problems, we determine thresholds for real-image using fuzzy clustering algorithm after extracting transition region consisting of essential and important components in image. Transition region is extracted based on Inか entropy, which is robust to noise and is well-known as a tool that describes image information. And fuzzy clustering algorithm can determine optimal thresholds for real-image and be easily extended to multi-level thresholding. The experimental results demonstrate the effectiveness of the proposed method for performance.

Backlit Region Detection Using Adaptively Partitioned Block and Fuzzy C-means Clustering for Backlit Image Enhancement (역광 영상 개선을 위한 퍼지 C-평균 분류기와 적응적 블록 분할을 사용한 역광 영역 검출)

  • Kim, Nahyun;Lee, Seungwon;Paik, Joonki
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.2
    • /
    • pp.124-132
    • /
    • 2014
  • In this paper, we present a novel backlit region detection and contrast enhancement method using fuzzy C-means clustering and adaptively partitioned block based contrast stretching. The proposed method separates an image into both dark backlit and bright background regions using adaptively partitioned blocks based on the optimal threshold value computed by fuzzy logic. The detected block-wise backlit region is refined using the guided filter for removing block artifacts. Contrast stretching algorithm is then applied to adaptively enhance the detected backlit region. Experimental results show that the proposed method can successfully detect the backlit region without a complicated segmentation algorithm and enhance the object information in the backlit region.

Automatic Extraction of Canine Cataract Area with Fuzzy Clustering (퍼지 클러스터링을 이용한 반려견의 백내장 영역 자동 추출)

  • Kim, Kwang Baek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.11
    • /
    • pp.1428-1434
    • /
    • 2018
  • Canine cataract is developed with aging and can cause the blindness or surgical treatment if not treated timely. In this paper, we propose a method for extracting cataract suspicious areas automatically with FCM(Fuzzy C_Means) algorithm to overcome the weakness of previously attempted ART2 based method. The proposed method applies the fuzzy stretching technique and the Max-Min based average binarization technique to the dog eye images photographed by simple devices such as mobile phones. After applying the FCM algorithm in quantization, we apply the brightness average binarization method in the quantized region. The two binarization images - Max-Min basis and brightness average binarization - are ANDed, and small noises are removed to extract the final cataract suspicious areas. In the experiment with 45 dog eye images with canine cataract, the proposed method shows better performance in correct extraction rate than the ART2 based method.

An Efficient Clustering Algorithm based on Heuristic Evolution (휴리스틱 진화에 기반한 효율적 클러스터링 알고리즘)

  • Ryu, Joung-Woo;Kang, Myung-Ku;Kim, Myung-Won
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.1_2
    • /
    • pp.80-90
    • /
    • 2002
  • Clustering is a useful technique for grouping data points such that points within a single group/cluster have similar characteristics. Many clustering algorithms have been developed and used in engineering applications including pattern recognition and image processing etc. Recently, it has drawn increasing attention as one of important techniques in data mining. However, clustering algorithms such as K-means and Fuzzy C-means suffer from difficulties. Those are the needs to determine the number of clusters apriori and the clustering results depending on the initial set of clusters which fails to gain desirable results. In this paper, we propose a new clustering algorithm, which solves mentioned problems. In our method we use evolutionary algorithm to solve the local optima problem that clustering converges to an undesirable state starting with an inappropriate set of clusters. We also adopt a new measure that represents how well data are clustered. The measure is determined in terms of both intra-cluster dispersion and inter-cluster separability. Using the measure, in our method the number of clusters is automatically determined as the result of optimization process. And also, we combine heuristic that is problem-specific knowledge with a evolutionary algorithm to speed evolutionary algorithm search. We have experimented our algorithm with several sets of multi-dimensional data and it has been shown that one algorithm outperforms the existing algorithms.

An Approximate Query Answering Method using a Knowledge Representation Approach (지식 표현 방식을 이용한 근사 질의응답 기법)

  • Lee, Sun-Young;Lee, Jong-Yun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.8
    • /
    • pp.3689-3696
    • /
    • 2011
  • In decision support system, knowledge workers require aggregation operations of the large data and are more interested in the trend analysis rather than in the punctual analysis. Therefore, it is necessary to provide fast approximate answers rather than exact answers, and to research approximate query answering techniques. In this paper, we propose a new approximation query answering method which is based on Fuzzy C-means clustering (FCM) method and Adaptive Neuro-Fuzzy Inference System (ANFIS). The proposed method using FCM-ANFIS can compute aggregate queries without accessing massive multidimensional data cube by producing the KR model of multidimensional data cube. In our experiments, we show that our method using the KR model outperforms the NMF method.

Design of Incremental FCM-based Recursive RBF Neural Networks Pattern Classifier for Big Data Processing (빅 데이터 처리를 위한 증분형 FCM 기반 순환 RBF Neural Networks 패턴 분류기 설계)

  • Lee, Seung-Cheol;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.6
    • /
    • pp.1070-1079
    • /
    • 2016
  • In this paper, the design of recursive radial basis function neural networks based on incremental fuzzy c-means is introduced for processing the big data. Radial basis function neural networks consist of condition, conclusion and inference phase. Gaussian function is generally used as the activation function of the condition phase, but in this study, incremental fuzzy clustering is considered for the activation function of radial basis function neural networks, which could effectively do big data processing. In the conclusion phase, the connection weights of networks are given as the linear function. And then the connection weights are calculated by recursive least square estimation. In the inference phase, a final output is obtained by fuzzy inference method. Machine Learning datasets are employed to demonstrate the superiority of the proposed classifier, and their results are described from the viewpoint of the algorithm complexity and performance index.

Design of fuzzy Independence Array Structure using DNA Coding Optimization (DNA 코딩 최적화에 의한 독립 배열구조의 퍼지규칙 설계)

  • Kwon, Yang-Won;Choi, Yong-Sun;Han, Il-Suk;Ahn, Tae-Chon
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.3019-3021
    • /
    • 2000
  • In this paper. a new fuzzy modeling algorithm is proposed : it can express a given unknown system with a small number of fuzzy rules and be easily implemented. This method uses an independent array instead of a lattice form for a premise membership function. For the purpose of getting the initial value of fuzzy rules. the method uses the fuzzy c-means clustering method. To optimally tune the initial fuzzy rule. the DNA coding method is also utilized at same time. Box and Jenkins's gas furnace data is used to illustrate the validity of the proposed algorithm.

  • PDF

A Study on the Feature Region Segmentation for the Analysis of Eye-fundus Images (안저영상 해석을 위한 특징영역의 분할에 관한 연구)

  • 강전권;한영환
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.2
    • /
    • pp.121-128
    • /
    • 1995
  • Information about retinal blood vessels can be used in grading disease severity or as part of the process of automated diagnosis of diseases with ocular menifestations. In this paper, we address the problem of detecting retinal blood vessels and optic disk (papilla) in eye-fundus images. We introduce an algorithm for feature extraction based on Fuzzy Clustering algorithm (fuzzy c-means). A method of finding the optic disk (papilla) is proposed in the eye-fundus images. Additionally, the inrormations such as position and area of the optic disk are extracted. The results are compared to those obtained from other methods. The automatic detection of retinal blood vessels and optic disk in the eye-rundus images could help physicians in diagnosing ocular diseases.

  • PDF

Application of Similarity Measure for Fuzzy C-Means Clustering to Power System Management

  • Park, Dong-Hyuk;Ryu, Soo-Rok;Park, Hyun-Jeong;Lee, Sang-H.
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.1
    • /
    • pp.18-23
    • /
    • 2008
  • A FCM with locational price and regional information between locations are proposed in this paper. Any point in a networked system has its own values indicating the physical characteristics of that networked system and regional information at the same time. The similarity measure used for FCM in this paper is defined through the system-wide characteristic values at each point. To avoid the grouping of geometrically distant locations with similar measures, the locational information are properly considered and incorporated in the proposed similarity measure. We have verified that the proposed measure has produced proper classification of a networked system, followed by an example of a networked electricity system.