• 제목/요약/키워드: Fuzzy associative memory

검색결과 28건 처리시간 0.026초

Granular Bidirectional and Multidirectional Associative Memories: Towards a Collaborative Buildup of Granular Mappings

  • Pedrycz, Witold
    • Journal of Information Processing Systems
    • /
    • 제13권3호
    • /
    • pp.435-447
    • /
    • 2017
  • Associative and bidirectional associative memories are examples of associative structures studied intensively in the literature. The underlying idea is to realize associative mapping so that the recall processes (one-directional and bidirectional ones) are realized with minimal recall errors. Associative and fuzzy associative memories have been studied in numerous areas yielding efficient applications for image recall and enhancements and fuzzy controllers, which can be regarded as one-directional associative memories. In this study, we revisit and augment the concept of associative memories by offering some new design insights where the corresponding mappings are realized on the basis of a related collection of landmarks (prototypes) over which an associative mapping becomes spanned. In light of the bidirectional character of mappings, we have developed an augmentation of the existing fuzzy clustering (fuzzy c-means, FCM) in the form of a so-called collaborative fuzzy clustering. Here, an interaction in the formation of prototypes is optimized so that the bidirectional recall errors can be minimized. Furthermore, we generalized the mapping into its granular version in which numeric prototypes that are formed through the clustering process are made granular so that the quality of the recall can be quantified. We propose several scenarios in which the allocation of information granularity is aimed at the optimization of the characteristics of recalled results (information granules) that are quantified in terms of coverage and specificity. We also introduce various architectural augmentations of the associative structures.

확장된 퍼지인식맵을 이용한 고장진단 시스템의 설계 (Design of fault diagnostic system by using extended fuzzy cognitive map)

  • 이쌍윤;김성호;주영훈
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.860-863
    • /
    • 1997
  • FCM(Fuzzy Cognitive Map) is a fuzzy signed directed graph for representing causal reasoning which has fuzziness between causal concepts. Authors have already proposed FCM-based fault diagnostic scheme. However, the previously proposed scheme has the problem of lower diagnostic resolution. In order to improve the diagnostic resolution, a new diagnostic scheme based on extended FCM which incorporates the concept of fuzzy number into FCM is developed in this paper. Furthermore, an enhanced TAM(Temporal Associative Memory) recall procedure and pattern matching scheme are also proposed.

  • PDF

모호성을 포함하고 있는 시계열 패턴인식을 위한 새로운 모델 RFAM과 그 응용 (A Novel Model, Recurrent Fuzzy Associative Memory, for Recognizing Time-Series Patterns Contained Ambiguity and Its Application)

  • 김원;이중재;김계영;최형일
    • 정보처리학회논문지B
    • /
    • 제11B권4호
    • /
    • pp.449-456
    • /
    • 2004
  • 본 논문에서는 모호성을 포함하고 있는 시계열 패턴인식을 위한 새로운 인식모델인 순환퍼지기억장치를 제안한다. 순환퍼지기억장치는 기존의 퍼지기억장치에 순차적인 입력패턴를 처리하고 시간적 관련성을 표현할 수 있는 순환층을 추가함으로써 확장된 모델이다. 본 논문에서 제안하는 순환퍼지기억장치는 입력과 출력사이의 관련정도를 설정하기 위해 헤비안 방식의 학습알고리즘을 사용한다. 그리고 순환퍼지기억장치의 순환층에 필요한 가중치를 학습하기 위해서 오류역전파 알고리즘을 이용한다. 본 논문에서는 제안하는 모델을 음성신호의 경계를 추출하는 문제에 적용하여 성능을 평가한다.

Noise-tolerant Image Restoration with Similarity-learned Fuzzy Association Memory

  • Park, Choong Shik
    • 한국컴퓨터정보학회논문지
    • /
    • 제25권3호
    • /
    • pp.51-55
    • /
    • 2020
  • 본 논문에서는 이미지 복원에 사용되는 기존의 FAM (Fuzzy Associative Memory)에 유사성 학습을 채택하여 개선된 FAM을 제안한다. 이미지 복원은 노이즈가 존재하는 버전에서 원 이미지에 가깝게 복원하는 것을 의미한다. 얼굴 인식과 같은 중요한 적용 문제에서 이 프로세스는 잡음에 강하고 견고하며 빠르며 확장 가능해야한다. 기존의 FAM 은 강력한 퍼지 제어를 통하여 도메인에 적용 할 수 있지만 실제 응용 프로그램에서는 용량 문제가 있지만 단순한 단일 계층 신경망이다. 유사성 측정은 복구 된 이미지와 원본 이미지 사이의 제곱 평균 오차를 최소화하기 위해 FAM 구조의 연결 강도와 관련이 있다. 제안된 알고리즘의 효과는 실험에서 랜덤 노이즈로 인한 오류 크기가 현저히 낮아지는 것을 확인하였다.

퍼지 신경망을 이용한 퍼지 추론 시스템의 학습 및 추론 (Learning and inference of fuzzy inference system with fuzzy neural network)

  • 장대식;최형일
    • 전자공학회논문지B
    • /
    • 제33B권2호
    • /
    • pp.118-130
    • /
    • 1996
  • Fuzzy inference is very useful in expressing ambiguous problems quantitatively and solving them. But like the most of the knowledge based inference systems. It has many difficulties in constructing rules and no learning capability is available. In this paper, we proposed a fuzzy inference system based on fuzy associative memory to solve such problems. The inference system proposed in this paper is mainly composed of learning phase and inference phase. In the learning phase, the system initializes it's basic structure by determining fuzzy membership functions, and constructs fuzzy rules in the form of weights using learning function of fuzzy associative memory. In the inference phase, the system conducts actual inference using the constructed fuzzy rules. We applied the fuzzy inference system proposed in this paper to a pattern classification problem and show the results in the experiment.

  • PDF

GLOBAL EXPONENTIAL STABILITY OF BAM FUZZY CELLULAR NEURAL NETWORKS WITH DISTRIBUTED DELAYS AND IMPULSES

  • Li, Kelin;Zhang, Liping
    • Journal of applied mathematics & informatics
    • /
    • 제29권1_2호
    • /
    • pp.211-225
    • /
    • 2011
  • In this paper, a class of bi-directional associative memory (BAM) fuzzy cellular neural networks with distributed delays and impulses is formulated and investigated. By employing an integro-differential inequality with impulsive initial conditions and the topological degree theory, some sufficient conditions ensuring the existence and global exponential stability of equilibrium point for impulsive BAM fuzzy cellular neural networks with distributed delays are obtained. In particular, the estimate of the exponential convergence rate is also provided, which depends on the delay kernel functions and system parameters. It is believed that these results are significant and useful for the design and applications of BAM fuzzy cellular neural networks. An example is given to show the effectiveness of the results obtained here.

개선된 퍼지 연상 메모리를 이용한 영상 복원 (Image Restoration using Enhanced Fuzzy Associative Memory)

  • 조서영;민지희;김광백
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2004년도 춘계종합학술대회
    • /
    • pp.133-135
    • /
    • 2004
  • 신경 회로망에서 연상 메모리(Associative Memory)는 주어진 자료에 대해 정보를 저장하고 복원하는 알고리즘이다. 본 논문에서는 학습된 영상의 정확한 분류와 왜곡된 영상의 복원 및 분류를 위해 기존의 퍼지 연상 메모리 알고리즘을 개선하였다. 기존의 퍼지 연상 메모리는 학습 데이터와 학습 원본과 같은 입력에 대해 우수한 복원 성능을 보이나 학습 데이터의 수가 증가할수록 그리고 왜곡된 입력에 대해 정확히 출력할 수 없고 복원 성능도 저하된다. 따라서 본 논문에서는 기존의 퍼지 연상 메모리 알고리즘을 개선하여 왜곡된 입력에 대해서도 원본 학습 데이터를 정확히 출력하고 복원하는 개선된 퍼지 연상 메모리 알고리즘을 제안하였다.

  • PDF

퍼지 인지 맵과 퍼지 연상 메모리를 이용한 오인진단 모델 (A Model for diagnosing Students′Misconception using Fuzzy Cognitive Maps and Fuzzy Associative Memory)

  • 신영숙
    • 인지과학
    • /
    • 제13권1호
    • /
    • pp.53-59
    • /
    • 2002
  • 본 논문은 퍼지 인지 맵과 퍼지 연상 메모리를 사용하여 열과 온도에 관한 학생들의 과학개념 이해에서 발생되는 오인을 진단할 수 있는 오인 진단 모델을 제시한다. 오인 진단 모델에서 퍼지 인지 맵은 과학현상에 대한 학생들이 가지는 선입개념들과 오인들을 인과관계로 표현할 수 있다. 또한 개념간의 인과관계를 기억할 수 있는 퍼지 연상 메모리를 통하여 오인의 원인들을 진단한다. 본 연구는 기존의 학습 오인을 진단하는 규칙기반 전문가 시스템의 한계성을 극복할 수 있는 새로운 방법을 제공하며, 교육분야의 다양한 영역에서 학습자들의 학습 진단을 위한 지능형 개인교수 시스템으로 적용될 수 있을 것이다.

  • PDF

A Movement Instruction System Using Virtual Environment

  • Hatayama, Junichi;Murakoshi, Hideki;Yamaguchi, Toru
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 ISIS 2003
    • /
    • pp.70-73
    • /
    • 2003
  • This paper proposes a movement instruction system using virtual environment. This system consists of a monitor, cameras, ana a PC. A learner is coached by a virtual instructor that is displayed in virtual environment as 3 dimensional computer graphics on the monitor. Virtual instructor shows sample movement and suggests mistakes of learner's movement by recognizing movement of learner's movement from the picture that cameras capture. To improve the robust characteristic of information from cameras, the system enables to select optimum inputs from cameras based on learner's movement It implemented by Fuzzy associative inference system Fuzzy associative inference system is implemented by bi-directional associative memory and fuzzy rules. It is suitable to convert obscure information into clear. We implement and evaluate the movement instruction system

  • PDF

뉴로 퍼지를 이용한 포탈 영상의 개선 알고리듬의 연구 (Enhancement Alogorithm of Portal Image using Neuo-Fuzzy)

  • 허수진;신동익
    • 대한의용생체공학회:의공학회지
    • /
    • 제21권5호
    • /
    • pp.527-535
    • /
    • 2000
  • 대부분의 포탈영상이 그에 상응하는 시뮬레이터 영상을 참조 영상으로 하여 방사선치료 계획을 수행하고 있다. 이것은 선형가속기의 높은 에너지 X선으로서 얻어지는 포탈 영상의 물리적 특성 때문에, 구조적으로 대단히 불량한 포탈 영상의 개선과 잃어버린 영상 정보의 복원에 시뮬레이터 영상 자체에서의 영상정보를 이용할 수 있다는 가능성을 보여주고 있는 것이다. 본 연구에서는 최대 퍼지 엔트로피를 평가함수로 이용한 유전자 알고리듬을 사용하여 영상에서의 퍼지 영역을 자동적으로 결정하고, 그것을 멤버쉽 함수에서 적용하여 퍼지영상 개선 기법으로서 포탈 영상과 시뮬레이터 영상을 개선한 후, 잡음이 중첩된 시뮬레이터 영상들로서 연관기억장치를 학습시키고 여기에 퍼지 방법으로 개선시킨 포탈 영상을 입력하여 기존의 영상기법으로 처리된 영상보다 좋은 포탈 영상을 얻을 수 있었다.

  • PDF