• Title/Summary/Keyword: Fuzzy Structure Modeling

Search Result 151, Processing Time 0.027 seconds

Fuzzy Modeling for Nonlinear Systems Using Virus-Evolutionary Genetic Algorithm (바이러스-진화 유전 알고리즘을 이용한 비선형 시스템의 퍼지모델링)

  • Lee, Seung-Jun;Joo, Young-Hoon;Chang, Wook;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.522-524
    • /
    • 1999
  • This paper addresses the systematic approach to the fuzzy modeling of the class of complex and uncertain nonlinear systems. While the conventional genetic algorithm (GA) only searches the global solution, Virus-Evolutionary Genetic Algorithm(VEGA) can search the global and local optimal solution simultaneously. In the proposed method the parameter and the structure of the fuzzy model are automatically identified at the same time by using VEGA. To show the effectiveness and the feasibility of the proposed method, a numerical example is provided. The performance of the proposed method is compared with that of conventional GA.

  • PDF

A Multi-Stage 75 K Fuzzy Modeling Method by Genetic Programming

  • Li Bo;Cho Kyu-Kab
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2002.05a
    • /
    • pp.877-884
    • /
    • 2002
  • This paper deals with a multi-stage TSK fuzzy modeling method by using Genetic Programming (GP). Based on the time sequence of sampling data the best structural change points of complex systems are detemined by using GP, and also the moving window is simultaneously introduced to overcome the excessive amount of calculation during the generating procedure of GP tree. Therefore, a multi-stage TSK fuzzy model that attempts to represent a complex problem by decomposing it into multi-stage sub-problems is addressed and its learning algorithm is proposed based on the Radial Basis Function (RBF) network. This approach allows us to determine the model structure and parameters by stages so that the problems ran be simplified.

  • PDF

Fuzzy Identification by means of Fuzzy Inference Method and its Optimization by GA (퍼지 추론 방법을 이용한 퍼지 동정과 유전자 알고리즘에 의한 이의 최적화)

  • Park, Byoung-Jun;Park, Chun-Seong;Ahn, Tae-Chon;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.563-565
    • /
    • 1998
  • In this paper, we are proposed optimization method of fuzzy model in order to complex and nonlinear system. In the fuzzy modeling, a premise identification is very important to describe the charateristics of a given unknown system. Then, the proposed fuzzy model implements system structure and parameter identification, using the fuzzy inference method and genetic algorithms. Inference method for fuzzy model presented in our paper include the simplified inference and linear inference. Time series data for gas furance and sewage treatment process are used to evaluate the performance of the proposed model. Also, the performance index with weighted value is proposed to achieve a balance between the results of performance for the training and testing data.

  • PDF

Neuro-Fuzzy GMDH Model and Its Application to Forecasting of Mobile Communication (뉴로 - 퍼지 GMDH 모델 및 이의 이동통신 예측문제에의 응용)

  • Hwang, Heung-Suk
    • IE interfaces
    • /
    • v.16 no.spc
    • /
    • pp.28-32
    • /
    • 2003
  • In this paper, the fuzzy group method data handling-type(GMDH) neural networks and their application to the forecasting of mobile communication system are described. At present, GMDH family of modeling algorithms discovers the structure of empirical models and it gives only the way to get the most accurate identification and demand forecasts in case of noised and short input sampling. In distinction to neural networks, the results are explicit mathematical models, obtained in a relative short time. In this paper, an adaptive learning network is proposed as a kind of neuro-fuzzy GMDH. The proposed method can be reinterpreted as a multi-stage fuzzy decision rule which is called as the neuro-fuzzy GMDH. The GMDH-type neural networks have several advantages compared with conventional multi-layered GMDH models. Therefore, many types of nonlinear systems can be automatically modeled by using the neuro-fuzzy GMDH. The computer program is developed and successful applications are shown in the field of estimating problem of mobile communication with the number of factors considered.

A fuzzy Sliding Mode Control of Wheeled Mobile Robot with a Differential Drive

  • Kang, Young-Hoon;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.265-270
    • /
    • 1998
  • In this paper we introduce a modeling of wheeled mobile robot with a differential drive derived by R.M. DeSantis and using the dynamics model-ing with some disturbance term we control the wheeled mobile robot using fuzzy sliding mode control(FSMC) method. In a fuzzy control approach it is very difficult to prove the stability of the fuzzy controller. Therefore, to overcome that difficult proof of the stability in a fuzzy control method, we first propose a sliding mode controller and prove the stability of the proposed controller. Next, transforming the proposed sliding mode controller into a fuzzy sliding mode controller without changing the basic structure of the sliding mode con-troller, we easily obtain a fuzzy sliding mode con-troller(FSMC) whose stability is guaranteed with-out difficult stability proof procedure of the proposed FSMC.

  • PDF

On Neural Fuzzy Systems

  • Su, Shun-Feng;Yeh, Jen-Wei
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.4
    • /
    • pp.276-287
    • /
    • 2014
  • Neural fuzzy system (NFS) is basically a fuzzy system that has been equipped with learning capability adapted from the learning idea used in neural networks. Due to their outstanding system modeling capability, NFS have been widely employed in various applications. In this article, we intend to discuss several ideas regarding the learning of NFS for modeling systems. The first issue discussed here is about structure learning techniques. Various ideas used in the literature are introduced and discussed. The second issue is about the use of recurrent networks in NFS to model dynamic systems. The discussion about the performance of such systems will be given. It can be found that such a delay feedback can only bring one order to the system not all possible order as claimed in the literature. Finally, the mechanisms and relative learning performance of with the use of the recursive least squares (RLS) algorithm are reported and discussed. The analyses will be on the effects of interactions among rules. Two kinds of systems are considered. They are the strict rules and generalized rules and have difference variances for membership functions. With those observations in our study, several suggestions regarding the use of the RLS algorithm in NFS are presented.

Automatic GA fuzzy modeling with fine tuning method

  • Son, You-Seok;Chang, Wook;Park, Jin-Bae;Joo, Young-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.189-192
    • /
    • 1996
  • This paper presents a systematic approach to identify a linguistic fuzzy model for a multi-input and single-output complex system. Such a model is composed of fuzzy rules, and its output is inferred by the simplified reasoning. The structure and membership function parameters for a fuzzy model are automatically and simultaneously identified by GA (Genetic Algorithm). After GA search, optimal parameters for the fuzzy model are finely tuned by a gradient method. A numerical example is provided to evaluate the feasibility of the proposed approach. Comparison shows that the suggested approach can produce the linguistic fuzzy model with higher accuracy and a smaller number of rules than the ones achieved previously in other methods.

  • PDF

Design of fuzzy Independence Array Structure using DNA Coding Optimization (DNA 코딩 최적화에 의한 독립 배열구조의 퍼지규칙 설계)

  • Kwon, Yang-Won;Choi, Yong-Sun;Han, Il-Suk;Ahn, Tae-Chon
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.3019-3021
    • /
    • 2000
  • In this paper. a new fuzzy modeling algorithm is proposed : it can express a given unknown system with a small number of fuzzy rules and be easily implemented. This method uses an independent array instead of a lattice form for a premise membership function. For the purpose of getting the initial value of fuzzy rules. the method uses the fuzzy c-means clustering method. To optimally tune the initial fuzzy rule. the DNA coding method is also utilized at same time. Box and Jenkins's gas furnace data is used to illustrate the validity of the proposed algorithm.

  • PDF

Optimal Design of Fuzzy-Neural Networkd Structure Using HCM and Hybrid Identification Algorithm (HCM과 하이브리드 동정 알고리즘을 이용한 퍼지-뉴럴 네트워크 구조의 최적 설계)

  • Oh, Sung-Kwun;Park, Ho-Sung;Kim, Hyun-Ki
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.7
    • /
    • pp.339-349
    • /
    • 2001
  • This paper suggests an optimal identification method for complex and nonlinear system modeling that is based on Fuzzy-Neural Networks(FNN). The proposed Hybrid Identification Algorithm is based on Yamakawa's FNN and uses the simplified inference as fuzzy inference method and Error Back Propagation Algorithm as learning rule. In this paper, the FNN modeling implements parameter identification using HCM algorithm and hybrid structure combined with two types of optimization theories for nonlinear systems. We use a HCM(Hard C-Means) clustering algorithm to find initial apexes of membership function. The parameters such as apexes of membership functions, learning rates, and momentum coefficients are adjusted using hybrid algorithm. The proposed hybrid identification algorithm is carried out using both a genetic algorithm and the improved complex method. Also, an aggregated objective function(performance index) with weighting factor is introduced to achieve a sound balance between approximation and generalization abilities of the model. According to the selection and adjustment of a weighting factor of an aggregate objective function which depends on the number of data and a certain degree of nonlinearity(distribution of I/O data), we show that it is available and effective to design an optimal FNN model structure with mutual balance and dependency between approximation and generalization abilities. To evaluate the performance of the proposed model, we use the time series data for gas furnace, the data of sewage treatment process and traffic route choice process.

  • PDF

Adaptation of Clustering Method to FNN for Performance Improvement (FNN 성능개선을 위한 클러스터링기법의 적용)

  • 최재호;박춘성;오성권;안태천
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.10a
    • /
    • pp.135-138
    • /
    • 1997
  • In this paper, we proposed effective modeling method to nonlinear complex system. Fuzzy Neural Network(FNN) was used as basic model. FNN was fused of Fuzzy Inference which has linguistic property and Neural Network which has learning ability and high tolerence level. This paper, we used FNN which was proposed by Yamakawa. The FNN used Simple Inference as fuzzy inference method and Error Back Propagation Algorithm as learning rule. This structure has better property than other structure at learning speed and convergence ability. But it has difficulty at definition of membership function. We used Hard c-Mean method to overcome this difficulty. To evaluate proposed method. We applied the proposed method to waste water treatment process. We obtained better performance than conventional model.

  • PDF