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Abstract

Neural fuzzy system (NFS) is basically a fuzzy system that has been equipped with learning
capability adapted from the learning idea used in neural networks. Due to their outstanding
system modeling capability, NFS have been widely employed in various applications. In this
article, we intend to discuss several ideas regarding the learning of NFS for modeling systems.
The first issue discussed here is about structure learning techniques. Various ideas used in
the literature are introduced and discussed. The second issue is about the use of recurrent
networks in NFS to model dynamic systems. The discussion about the performance of such
systems will be given. It can be found that such a delay feedback can only bring one order
to the system not all possible order as claimed in the literature. Finally, the mechanisms and
relative learning performance of with the use of the recursive least squares (RLS) algorithm
are reported and discussed. The analyses will be on the effects of interactions among rules.
Two kinds of systems are considered. They are the strict rules and generalized rules and have
difference variances for membership functions. With those observations in our study, several
suggestions regarding the use of the RLS algorithm in NFS are presented.
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1. Introduction

System identification is a very important issue in system engineering. In recent decades, neural
networks [1-3] and fuzzy systems [4-7] are often used to model complicated systems. In these
modeling approaches, the task is to obtain a set of fuzzy rules or a neural network that can
overall act like the system to be modeled. These approaches can construct systems directly
from the input-output relationship without the use of any domain knowledge. Thus, they are
often referred to as model-free estimators [1]. Neural fuzzy system (NFS) [8-10] is basically a
fuzzy system that has been equipped with learning capability adapted from the learning idea
used in neural networks. Due to their outstanding system modeling capability, NFS have been
widely employed in various applications. Basically, the main concern of NFS is learning. As
mentioned, NFS is a model-free estimator. Thus, it is natural to consider learning as the main
issue for system performance. In fact, the structure used to learn may also bring significant
differences for those approaches. This can be seen from [11, 12] about the comparison of
fuzzy systems and neural networks. In this article, we intend to discuss several ideas regarding
the learning of NFS for modeling systems.

The first issue discussed here is about structure learning techniques. It is easy to see that
when the number of input variables or the number of fuzzy sets for a variable increase the
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fuzzy rule numbers will exponentially increase. But, usually,
meaningful data patterns do not spread out in the whole region.
Thus, it is not necessary to use all possible rules in the system
for learning. Then to define which rules should be used can be
conducted through the so-called self-organization process. This
process is usually referred to as the structure learning stage. It
is to define rules from data. Such an idea is first proposed in
[13] and later on, various approaches were proposed. Those
ideas are introduced in this article.

The second issue is about the use of recurrent networks in
NFS to model dynamic systems. This kind of approach is
often called recurrent NFS or RNFS in the literature. Recurrent
networks are those networks of which the inputs of some nodes
are from following layers so that it forms loops. RNFS is to
have feedback links from some layers to some nodes (usually
are input nodes). In this approach, the feedback links are with
delay and it can be found that in this case, there is no signal
chasing phenomenon as expected for recurrent networks. Thus,
RNFS does not have various problems considered in recurrent
networks, like stability. To distinguish this difference, in our
study, it is referred to as delay feedback NFS instead of recurrent
NFS. In this article, the discussion about the performance of
such systems will be given. It can be found [14] that such a
delay feedback can only bring one order to the system not all
possible order as claimed in the literature.

Finally, we will consider the use of the issue of using recur-
sive least square (RLS) algorithms for the learning of fuzzy rule
consequences and the rule correlation effects in NFS. Usually
the consequence parts of NFS are characterized by singletons
or linear functions [13, 15, 16]. When linear functions are
considered, two different kinds of update rules, Backpropaga-
tion (BP) and RLS algorithms can be used for updating those
parameters. The BP algorithm is adapted from the learning
concept of neural network [11, 17] and is easy to implement.
In BP, the current gradient, which can be viewed as the local
information is used to update parameters. Thus, BP algorithm
may suffer from low convergence speed and/or being trapped
in local minima. On the other hand, adaptive neuron-fuzzy in-
ference system (ANFIS) [15] and self constructing neural fuzzy
inference network (SONFIN) [13] are to use the RLS algorithm
originally proposed in [16] in the learning process. However,
in practical applications, there are problems and then various
remedy mechanisms may be needed while using RLS for the
learning process in NFS. We have analyzed the effects of those
approaches in our previous work [18, 19]. In this article, the in-
teraction between rules on consequent part and RLS algorithm

will be analyzed. Furthermore, the operation of resetting the
covariance matrix is also discussed.

2. General Description of NFS

NFS have been widely used in last two decades. ANFIS [15] is
the most-often mentioned NFS. In the learning phase, ANFIS
uses all possible combinations of fuzzy sets in defining rules
and it can be expected that some rules may be useless. As being
equipped with structure learning capability, the SONFIN is pro-
posed in [13]. The structure of SONFIN is created dynamically
in the learning process and the system only uses rules that are
necessary. For the other parts, there is no different between
SONFIN and ANFIS. They are to realize a fuzzy model of the
following form:

Rule i :

If x1 is Ai1 and · · · and xn is Ain

then yi is ai0 + ai1x1 + ai2x2 + · · ·+ ainxn,

(1)

where Aij is a fuzzy set for input xj and aij’s for j = 1, . . . , n

are the consequent parameters for the i-th rule. The output
of the fuzzy system is to compute the overall output as the
weighting sum of all incoming signals as

y =
∑
i

w̄ifi =

∑
i wifi∑
i wi

, (2)

where fi and wi are the output and the firing strength, respec-
tively, of the i-th rule. By using a hybrid learning procedure
[11], ANFIS can tune both the membership function parameters
of the premise part and all aij’s of the consequent part of the
fuzzy rules. As mentioned before, SONFIN and ANFIS have
the same structure. Since the membership function is tuned
in the learning process, those membership functions used are
Gaussian functions. With Gaussian functions, the system will
tune their means (membership centers) and variances (member-
ship widths).

In the learning phase of SONFIN, rules are created dynami-
cally as learning proceeds upon receiving training data. Three
learning processes are conducted simultaneously in SONFIN
to define both the premise and consequent structure identifica-
tion of a fuzzy if-then rule. They are (A) input/output space
partitioning, (B) construction of fuzzy rules, and (C) parameter
identification. Processes A and B serve as the structure learn-
ing, and process C belongs to the parameter learning phase. In
the structure learning phase, when a new fuzzy set is needed,
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its width (variance) can be defined by different initial values.
When a small value is considered, it can be regarded as using
the linguistic hedge “very.” This kind of discussion about fuzzy
membership functions is given in [20], in which different pa-
rameter identification methods are considered and discussed.
The learning process (A) is to partition the input space based
on the input data distribution. In the process, when the current
existing rules of the system cannot sufficiently cover the new
input pattern, the system will created a new rule from this input
pattern. To sufficiently cover means the current input pattern
cannot have a sufficiently large firing strength from all existing
rules. This firing strength threshold will decide the number
of input and output clusters generated in the SONFIN and in
turn will determine the number of rules used in the system.
In other words, this threshold will define the complexity of
the system. However, as reported in our previous work [20],
different thresholds (or different variances) affect not only the
complexity of the system, but also the performance of the RLS
algorithm. In this study, the correlation terms in the covariance
matrix used in the RLS algorithm will be studied. As men-
tioned, the dimension of the RLS algorithm covariance matrix
is [(input number+1)×(rule number)]2. An obvious disadvan-
tage of using RLS is the computational burden when the input
number and/or the rule number are large. This is the reason
that some approaches may tune the consequence parameters by
assuming those rules are independent [13]. But our study shows
that such ignorance of the correlation terms may degrade the
learning performance. We will further discuss this issue in the
next section. After a new rule is generated, the learning process
(B) is to define fuzzy rules based on the current input data. The
process is straightforward and the details can be found in [13].

Finally, the parameter-identification process is done concur-
rently with the structure identification process. For simplicity, a
single-output case is considered here. The goal is to minimize

the cost function E =
1

2
(y(t) − yd(t))2, where yd(t) is the

desired output and y(t) is the current output. SONFIN tunes
the parameter of the consequent part (i.e., a in Eq. (1) ) with
the RLS algorithm [8] as

a(t+ 1) = a(t) + P (t+ 1)u(t+ 1)(yd(t)− y(t)), (3)

P (t+ 1) =
1

λ

[
P (t)− P (t)u(t+ 1)uT (t+ 1)P (t)

λ+ uT (t+ 1)P (t)u(t+ 1)

]
, (4)

where t is the iteration number, u is the current input vector, P
is referred to as the covariance of the estimation for a, and λ is
a forgetting factor in the range between 0 to 1 [21, 22]. In fact,
the forgetting factor is originally employed to deal with time

varying problems. However, the problem here is the parameters
in the premise part are also tuned and thus the system matrix is
no longer a constant and then a forgetting factor is employed
to cope with this problem [11]. But, it can be expected that
such a approach may also introduce other problems. Thus, a
usual mean to avoid being trapped in local minima is to reset
the covariance matrix P after a period of training.

As mentioned, in SONFIN, the parameters of the premise part
(i.e., those means (mij) and variances (σij) of the membership
functions) are also tuned. The tuning algorithm used for those
parameters is simply the BP learning algorithm. The details
can be found in [13]. In this study, in order to reduce the
effects from the change of the premise part, a small value of
the learning constant in the BP algorithm is selected. The same
idea is discussed in our previous work [20].

3. Structure Learning for NFS

In this section, several self-organization learning ideas used
in the structure leaning for of NFS will be introduced. As
mentioned, it is not necessary to use all possible rules in the
system for learning. To construct a fuzzy model, the fuzzy
subspaces required for defining fuzzy partitions in premise parts
and the parameters required for defining functions in consequent
parts must both be obtained. In the original Takagi-Sugeno-
Kang (TSK) modeling approach [16], users must define fuzzy
subspaces in advance, and then, the parameters in consequences
are obtained through the RLS algorithm. This simple idea
is then employed in ANFIS [15]. It can be found that those
approaches must use all possible rules. In the following, we
shall discuss ways of defining rules.

As mentioned in the above section, in the learning phase of
SONFIN [13], rules are created dynamically as learning pro-
ceeds upon receiving training data. Three learning processes
are conducted simultaneously in SONFIN to define both the
premise and consequent structure identification of a fuzzy if-
then rule. This kind of learning approach is somehow said to
be an online learning approach. In that approach, even though
in this structure learning phase, the process can be on line,
the later learning algorithm, like BP is not suitable for online
learning due to slow convergent property of the BP learning al-
gorithm, which usually needs hundreds or thousands of epochs
to converge. This effect can be seen from [23] that even a sim-
ple direct-generation-from-data approach [6] can outperform
SONFIN in an online learning situation. Thus, it can be found
that various structure learning approaches that are not online
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approaches were proposed in the later studies.

A simple idea is to use the original structure learning in [17].
In that approach, the input space is first divided into fuzzy
subspaces through a clustering algorithm called the Kohonen
self-organized network [24] according to only the input por-
tion of training data. It can be found that the obtained fuzzy
subspaces may not cover the entire input space. Note that this
approach is similar to that in SONFIN and the fuzzy partition
is only based on input data. In other words, rules are defined
only based on the distribution of input portion of training data.
Usually, in the literature, this structure learning stage is called
the coarse tuning stage. After the fuzzy subspaces are defined,
the system is approximated in each subspace by a linear func-
tion, through supervised learning algorithms, such as BP or
least-square learning algorithms [2, 6, 7, 11]. In the meantime,
the fuzzy subspaces may also be tuned usually through BP
learning algorithms. This stage is called the fine tuning stage.
Note that each subspace corresponding to one fuzzy rule is
supposed to have a simple geometry in the input-output space,
normally having the shape of ellipsoid [25]. In fact, other fuzzy
clustering algorithms, such as the fuzzy C-mean (FCM) [26,
27] are also suitable to define fuzzy subspaces for fuzzy model-
ing. In general, the above mentioned approaches partition fuzzy
subspaces based on only the clustering in the input space of
training data and do not consider whether the output portion of
the training data supports such clustering or not. In other words,
such approaches do not account for the interaction between
input and output variables.

Similar to the use of the AND operation in the fuzzy reason-
ing process, the match of a rule for a data set requires that the
input portion and the output portions must be both matched with
the premise part and the consequence part of the rule. Thus,
to construct a rule, the input data and the output data must be
both considered. Hence, the authors in [25, 27] considered the
product space of input and output variables instead of only the
input space in classical clustering algorithms for fuzzy model-
ing. However, these approaches and the above approaches still
define fuzzy subspaces in a clustering manner and do not take
into account the functional properties in TSK fuzzy models. In
other words, in those approaches, training data that are close
enough instead of having a similar function behavior are said to
be in the same fuzzy subspace. Thus, if the consequence part
is a fuzzy singleton, it is nice. But, if the consequence part is a
linear function as usual be, such a structure learning behavior
may not be proper. As a result, the number of fuzzy subspaces
may tend to be more than enough.

In order to account for the linear function property, another
approach is proposed in [28]. In the approach, fuzzy subspaces
and the functions in consequent parts are simultaneously identi-
fied through the use of the fuzzy C-regression model (FCRM)
clustering algorithm. Thus, not like to calculate a distance to a
point (cluster center) in clustering algorithms, the approach is
to calculate the distance to a line in a linear regression approach.
This distance is then used to define an error function used in the
cost function. The idea of this kind of approaches is to find a
set of training data whose input-output relationship is somehow
a linear function, and then, those training data can be clustered
into one fuzzy subspace. Similar to other approaches, the struc-
ture learning behavior does not incorporate the optimization
process in modeling and hence, the fine tuning stage supervised
learning algorithms can further be used to adjust the model.

It should be note that in the above clustering or regression
algorithms, users must assign the cluster number, which is sup-
posed to be unknown. Another idea proposed in [29] is to
employ the so-called robust competitive agglomeration (RCA)
clustering algorithm used in computer vision and pattern recog-
nition [30] to form subspace. In this approach, the cluster
number is determined in the clustering process. Besides, the
clustering process begins from the whole data set and then can
reduce the effects of data sequence. As a result, it can have
fast convergent speed and better performance as claimed in the
literature.

Another consideration is about outliers in training data. The
intuitive definition of an outlier [31] is “an observation which
deviates so much from other observations as to arouse suspi-
cions that it was generated by a different mechanism.” Outliers
may occur due to various reasons, such as erroneous measure-
ments or noisy data from the tail of noise distribution functions.
When outliers exist, the networks may try to fit those improper
data and thus, the obtained systems may have the phenomenon
of overfitting [32-34]. The above structure learning algorithms
are all based on the principle of least square error minimization
and are easily affected by outliers, which should be degraded in
the clustering process [28, 30, 35-37]. In the fine-tuning pro-
cess, classical supervised learning algorithms such as gradient
descent approaches are used. When training data are corrupted
by large noise, such as outliers, traditional BP learning schemes
usually cannot come up with acceptable performance [38, 39].
Based on the principle of robust statistics, various robust learn-
ing algorithms have been proposed in the neural network com-
munity [40-45]. Most of them are to replace the square term in
the cost function by a so-called loss function. For the FCRM
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approach, it is difficult to adopt such robust learning concept.
In [29], a novel approach termed as the robust fuzzy regression
agglomeration (RFRA) clustering algorithm is shown to have
robust learning effects against outliers. While the RFRA clus-
tering algorithm determines the parameters in both premise and
consequent parts, the approach also employs a robust learning
algorithm to fine-tune the obtained fuzzy model. The simulation
results shown in [29] have indeed shown superior performance
of the proposed algorithm.

4. Delay Feedback and Dynamic Modeling

It can be easily found that NFS can only model static system
due to no memory in keeping previous states. When a dynamic
system is the modeling target, an often-used approach is to
use all necessary past inputs and outputs of the system as ex-
plicit inputs. Such a structure is referred to as the nonlinear
autoregressive with exogenous inputs (NARX) model [14, 46].
Another kind of approaches [14, 47-49] is to feedback the out-
puts of internal nodes in networks with a time delay. Those
methods have shown to have nice modeling accuracy on mod-
eling dynamical systems in some examples. Such networks
are usually called recurrent networks in the literature [47-49].
However, it can be found that even though the system indeed
have loop in the connections, the feedback is with a time delay
and then the system does not have actual loop. Thus, in our
study, it is called the delay feedback networks [14].

Delay feedback networks are to use internal memories to
catch internal states. We can also introduce delay feedbacks to
account for dynamical behaviors in SONFIN. However, where
to put those delay links is not so straightforward because there
are semantics associated with those layers. Different from that
used in [47, 48], another delay feedback approach for SONFIN,
termed as the additive delay feedback neural fuzzy network
(ADFNFN) is proposed in [14]. The basic idea is to adopt the
autoregression and moving-average (ARMA) type [50] of mod-
eling approaches. In an ARMA model, the output is predicted
as a linear combination of the current input and previous inputs
and outputs. In other words, previous outputs are included into
the prediction model in an additive manner. In fact, NARX
models can generally be viewed as a nonlinear extension of
ARMA models because they mix all inputs in an additive man-
ner (linear integration functions in neural networks and linear
consequence functions in SONFIN). From simulations, it is
evident that the proposed ADFNFN can have better learning
performances than those approaches proposed in [47] and in

[48] do.

It is noted that the prediction for the next step in dynamic
systems is always based on previous data for a series-parallel
identification scheme [50]. Then, when the step size is small,
the possible error generated in one step will also be small. This
correspondence will make the traditional root mean square
errors (RMSE) not able to truly capture the ideas about how ac-
curate the current model can predict. Another evaluating index
called the non-dimensional error index (NDEI) is considered in
[51] to evaluate modeling errors. The NDEI is defined as:

NDEI =

√√√√ 1

N

N∑
i=1

(T (i)−O(i))
2

δ(T )
, (5)

where N is the number of data, T (i) is the desired output, O(i)

is the predicted output and δ(T ) is the averaged change in one
sampling time in the target series. In some reports such as [47,
52], the performances shown in their applications seem nice.
However, their NDEI is 4.2370 (RMSE = 0.2585 (MSE =

0.0668) and δ(T ) = 0.0610) in [52] and 3.4426 (RMSE =

0.21 and δ(T ) = 0.0610) in [47]. That means their averaged
prediction errors are about 423.7% and 344.26%, respectively,
of the averaged change in one step. It is unacceptable. In other
words, their learning in fact did not converge. As a matter
of fact, in [14], by tuning some parameters, the NDEI can
converge to 0.4344 (as shown in Table 1) (RMSE = 0.0265,
δ(T ) = 0.0610), which is only 43.44%. Such a result still is
not good enough. In [14], there is another approach, in which
the NDEI is only 0.2148 (21.48%), which then can be viewed
as a nice prediction.

Intuitively, the use of delay feedback could model any order
of dynamic systems because those delay elements can be al kind
of signals including those delayed ones. However, from [14], it
can be found that those delay feedback models can only achieve
the accuracy level of order-2 NARX models. In other words,
those delay feedback networks seem not able to model the sys-
tems as accurately as the NARX models with proper orders do.
It is because delay feedback models only use one delay in the
modeling approaches, it is somewhat similar to NARX models
with order 2. As shown in [14], if two feedback connections are
used for each internal state; one is with one delay and the other
is with two delays, it can be found that the errors have been
significantly reduced when the considered systems are order-3
and order-4 systems. However, the modeling accuracy for the
order-4 system is still not good enough. It is clearly evident that
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the role of the used delay number in a delay feedback model is
similar to that of the system order in an NARX model. Thus, it
can be concluded that delay feedback network is not necessary
because it is more complicated than an NARX model with a
proper order and cannot provide better performance.

5. Analysis of the Use of RLS

As mentioned, ANFIS [15] and SONFIN [13] employ the RLS
algorithm originally proposed in [16] in the learning process.
However, in practical applications, there are problems and then
various remedy mechanisms may be needed while using RLS
for the learning process in NFS. In this article, the interaction
between rules on consequent part and RLS algorithm will be
analyzed and the operation of resetting the covariance matrix
is also discussed. In the literature, RLS algorithms have been
widely used in adaptive filtering, self-tuning control systems
and system identification [53]. From the literature, it can be
found that there are several advantages in using RLS algo-
rithms, such as fast convergence speed and small estimation
errors, especially while the system considered is simple and
time invariant. Theoretically, the estimation of RLS is the best
estimation under the assumption of Gaussian noise in ideal
cases. In practical applications, there are some possible reme-
dies. The advantage of those approaches can be obviously but
not always while the system considered becomes complicated.
Recently, IRSFNN [49] also present two types of parameter
identification steps, which we referred to as the reduced and full
covariance matrices for RLS algorithms. To explain the results
in [49], the overlap coefficient is employed to define the inter-
section between fuzzy sets. Similarly in our previous work [20],
two types of membership functions are considered to manifest
what the differences between full and reduce covariance matrix
are. When the system has more interaction between fuzzy sets,
it can be found that the off-diagonal parts of the covariance
matrix should not be ignored.

In our study, SONFIN [13] is employed as the NFS. In this
section, the learning algorithms used in the original SONFIN
are considered as a basis. The structure of SONFIN is created
dynamically in the learning process and only uses rules that are
necessary. It is easy to see that SONFIN can have very nice
performance especially when the number of input variables is
large. In the learning process, when the firing strength of the
current input feature is lower than a threshold, the system will
generate a new fuzzy rule for this input feature. In other words,
if necessary, SONFIN can generate new fuzzy rules for new

input features. After constructing fuzzy rules, the parameters
of the premise part and of the consequent part of the NFS are
updated through BP and RLS, respectively. It can be found that
there are two kinds of interactions; interaction between input
data and interaction between consequent structures. In order
to have the efficient computation, the consequence parameters
of SONFIN are calculated independently among rules [13].
However, it is expected that with the consideration of those
rule interactions, it can help in discovering new knowledge
among rules and improving the reasoning accuracy [13]. If the
membership functions are of less overlapping, no matter what
kinds of RLS algorithms are used, there is no much difference
in the learning performance [20].

As mentioned in [54-56], those pre-defined membership func-
tions can be modified (or tuned) by some operations, like “very”
or “more-or-less”. When membership functions are tuned, lin-
guistic variables can bring more human-like thinking with dif-
ferent kinds of membership functions. In SONFIN, the system
also has the capability of changing the cores and shapes of
membership functions. Consequently, SONFIN can have nice
performance in data learning. However, those tuning effects
may destroy original features of those membership functions.
Since SONFIN only creates rules that are necessary, those orig-
inal membership functions may contain some characteristics
for that data pair. While the membership functions are tuned
in the later learning process, those characteristics may be al-
tered and more complex interactions emerge. As mentioned
in [57], redundancy interaction usually cannot have significant
improvement in performance. Besides, the correlation terms
in the covariance matrix required in RLS is another problem.
When the dimension of the system to be modeled becomes
very large, the computational time required may become in-
feasible because of the dimension of the covariance matrix is
(the number of rules×the number of input variable+1)2. Also,
the interaction between BP (used for the tuning of input fuzzy
membership functions) and RLS (used for the tuning of the
consequence parameters) will be unexpected. In this study, the
interaction between rules on consequent part and RLS algorithm
will be analyzed and the operation of resetting the covariance
matrix is also discussed.

In this section, we will rearrange the analysis in [20] to ana-
lyze the performance of using the RLS algorithm with the full
covariance matrix and with a reduced covariance matrix. The
RLS algorithm with the full covariance matrix is the original
approach as Eqs. (3) and (4) where P is a full matrix. To use a
reduced matrix is to assume the consequence parameters among
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rules are independent and the correlation terms between rules
are all assumed zeros. Define [ao1 a11 · · · a1I ao2 a21 · · · a2I
· · · aoJ aJ1 · · · aJI ]

T as the parameter vector, where I is the
input dimension + 1 and J is the rule number. For Eq. (3), u
is the input vector for the whole consequence part and can be
written as.

u =
[
LI

(5)
1 (1 x1 · · ·xj) LI

(5)
2 (1 x1 · · ·xj)

· · · LI
(5)
i (1 x1 · · ·xj)

]T
where LI

(5)
i is the firing strength of the ith rule and the supscript

(5) means it is on the layer 5 of the whole structure [13]. For
the reduced matrix case, the consequence parameters among
rules are assumed to be independent. Thus, for Eq. (3), the
input vector of u for the ith rule is

ui =
[
LI

(5)
i (1 x1 · · ·xj)

]T
Then the covariance matrix P for each rule is with dimension
Jind×Jind, where Jind= I =(the input dimension + 1). There
are J (=the rule number) such covariance matrices and the total
dimension is J × I2 while it is (J × I)2 in the full matrix case.

In [57], three kinds of interaction for sensory inputs are
defined. They are redundancy/negative synergy, complemen-
tarity/positive synergy and independency. Those interaction
types define different situations of the actual value compared
to the combination of individual sensors. Those types can also
be considered in rule interactions of SONFIN while using the
RLS algorithm. While it is in the case of redundancy/negative
synergy, the system learning performance will better using the
independent RLS algorithm than that of using the full-rule RLS
algorithm. While it is in the case of complementarity/positive
synergy the full-rule RLS algorithm will perform better than
the independent RLS algorithm does. Finally, while they are In-
dependent, two RLS algorithms have no significant difference.

SONFIN updates the membership function and consequent
parts simultaneously in the learning process. Interaction in each
rule is difficult to manipulate. When BP changes the member-
ship function and the consequent part change by RLS algorithm
in one step, new membership functions will change the Layer
5 input, which makes the premise part used in previous RLS
calculation changed. Somehow such a change can be viewed
as the system is time varying. Thus, there are several methods
proposed in the literature to resolve this problem, like to use a
forgetting factor in the RLS algorithm, to reduce the learning

constant in BP.

Another issue in the use of forgetting factor in the RLS
algorithm is about resetting the covariance matrix P. It can
be found that resetting the covariance matrix can somehow
improve the training performance from our previous study [18].
However the overfitting phenomenon may occur in some cases.
By setting the covariance matrix with a large diagonal values,
the RLS algorithm will have the capability to focus on the
present data. It is called bootstrap [58]. In other words, we set
the system turn into local learning phase to reduce the effect
from previous learning.

Two functions are considered for illustration for this part of
study. First, a simply function Sinc is considered. The second
one is the identification of the Macky-Glass chaotic series. It is
know that by using different thresholds in SONFIN. SONFIN
can generate several NFS with different rule complexity. Here
we will have two types of fuzzy rules; generalized rules and
strict rules. They can be viewed as the interactions in those two
types are heavy and slight, respectively.

We continue the simulations in [19]. In the case of sinc,
7 and 25 rules are considered for two type fuzzy set mem-
bership functions with initial variance value 0.1 and 1. Their
corresponding learning performances are given in Table 2. It
can easily be found that the same performance for strict 7-rule
system. This system type they have less interaction on rules.
However, in 25-rule system, using the full P matrix can have
better performance than that of using the reduce P matrix. For
the generalized system, It is clearly evident that using the full
P matrix has better performance than that of using the reduce
system. Thus, when the system has less interaction between
rule, two different RLS algorithms with the whole system or
calculating for each rule individually will have similar perfor-
mance. But it could not be confirmed the system is in local
minimum. Next, the resetting P is taken into account and the
results are given in Table 3. From the results, it is observed
that except the strict 7 rules system, all systems have better
performance than those in Table 2.

While the rule system is of generalized rules cases and the
interaction among rules are significant, the original (Full) co-
variance matrix must be used. However, it can be expected
that when the full matrix is considered in the RLS algorithm,
the computation problem owing to a large dimension of the
covariance matrix may be there. In order to have a better com-
putational efficiency, the learning can use different RLS algo-
rithms after resetting the P matrix. Two simulations are shown
in Table 1. Except the strict 7-rule system, for the change from
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full to reduce P matrix case after resetting, the performance
in Table 1 is between with reset and non-reset full P matrix
system compared to those in Tables 2 and 3. But in the case of
change from reduce to full P matrix after resetting, it has very
nice performance in generalized cases.

The second simulation is the identification of the Macky-
Glass chaotic series. It has 200 2-dimension points for input
feature. The same cases situations as above are considered.
Tables 4-6 show those learning performances after 1100 epochs.
The same conclusions can be observed in this example too.
Thus, we can claim that the use of change from reduce to full
P matrix after resetting can have nice learning performance on
error and can achieve computational efficiency also.

Now, more complexity for the Macky-Glass function is con-
sidered. In [49], four past values are used for training. 1000
patterns are generated in this study. First 500 patterns are used
for training and the other 500 patterns are reserved for testing.
After 100 epochs, the error for the generalized system with
the use of full matrix is significantly better than others. In
other words, most researchers recommend to use the reduce
covariance matrix to save computational burden, it can be found
that the error difference is not slight. In practice, the change
of using different covariance matrices after resetting can be
employed to improve learning performance. In this study, the
covariance matrix is reset to the initial status at 10 epochs. The
results are shown in Table 7. Comparing the performance be-
tween resetting and non-resetting, two cases become worse;
strict rules with full covariance matrix system and generalized
rules with reduce covariance matrix system. Some approached
are considered here. First, the initial value of the covariance
matrix diagonal parts is reduced to increase the effects from
previous learning. The simulation results are shown in Table 8.
Secondly, we reset the system with the full covariance matrix
and the simulation result shown in Table 9.

From those results, it can be found that in this case only
resetting the covariance matrix is not enough to improve the
learning performance. In Table 8, the learning performance at
100 epochs 0.004281 is better than that in Table 7. Also for
generalized rules with reduce covariance matrix system case,
to reduce the value of covariance matrix diagonal parts can
indeed prevent the system unstable so as to catch up with the
generalized rules with the reduce covariance matrix system
results in Table 10.

Table 1. Learning errors (RMSE) for Sinc with change algorithms
Strict Generalized

Rule #/Epoch
500 600 500 600

Full to reduce P matrix
7 0.0791 0.0791 0.0104 0.0084
25 0.0135 0.0113 0.0037 0.0026

Reduce to full P matrix
7 0.0791 0.0791 0.0580 0.0121
25 0.0163 0.0120 0.0159 0.0023

RMSE, root mean square errors.

Table 2. Learning errors (RMSE) for Sinc
Strict Generalized

Rule #/Epoch
500 600 500 600

Full P matrix
7 0.0791 0.0791 0.0104 0.0095
25 0.0135 0.0127 0.0037 0.0032

Reduce P matrix
7 0.0791 0.0791 0.0580 0.0561
25 0.0163 0.0154 0.0159 0.0150

RMSE, root mean square errors.

Table 3. Learning errors (RMSE) for Sinc with reset
Strict Generalized

Rule #/Epoch
500 600 500 600

Full P matrix
7 0.0791 0.0791 0.0104 0.0073
25 0.0135 0.0111 0.0037 0.0012

Reduce P matrix
7 0.0791 0.0791 0.0580 0.0303
25 0.0163 0.0123 0.0159 0.0118

RMSE, root mean square errors.

Table 4. Learning errors (RMSE) for Macky-Glass
Strict Generalized

Rule #/Epoch
1000 1100 1000 1100

Full P matrix
7 0.0176 0.0176 0.0064 0.0061

15 0.0081 0.0079 0.0050 0.0047
Reduce P matrix

7 0.0176 0.0176 0.0096 0.0095
15 0.0083 0.0081 0.0081 0.0079

RMSE, root mean square errors.

6. Conclusions

NFS is a nice modeling technique. In this article, we make a
brief survey about its use in various aspects. For the structure
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Table 5. Learning errors (RMSE) for Macky-Glass with reset
Strict Generalized

Rule #/Epoch
1000 1100 1000 1100

Full P matrix
7 0.0176 0.0175 0.0064 0.0056

15 0.0081 0.0072 0.0050 0.0040
Reduce P matrix

7 0.0176 0.0175 0.0096 0.0091
15 0.0083 0.0073 0.0081 0.0065

RMSE, root mean square errors.

Table 6. Learning errors (RMSE) for Macky-Glass with change
algorithm

Strict Generalized
Rule #/Epoch

1000 1100 1000 1100
Full to reduce P matrix

7 0.0176 0.0175 0.0064 0.0059
15 0.0081 0.0072 0.0050 0.0040

Reduce to full P matrix
7 0.0176 0.0175 0.0096 0.0075

15 0.0083 0.0072 0.0081 0.0047

RMSE, root mean square errors.

Table 7. Learning errors (RMSE) for 4-input Macky-Glass with reset
after 10 epochs

Strict Generalized
Epochs

100 100
Full P matrix

Training 0.009606 0.000874
Testing 0.014053 0.001479

Reduce P matrix
Training 0.004258 4671.207
Testing 0.007109 7306.332

RMSE, root mean square errors.

Table 8. Learning errors (RMSE) for 4-input Macky-Glass with reset
and reduce the covariance matrix diagonal values from 1000 to 1

The RMS error at 100 epoch
Strict rules full covariance matrix system
Training 0.004281
Testing 0.0071
Generalized rulesreduce covariance matrix system
Training 0.005222
Testing 0.006421

RMSE, root mean square errors.

learning, from the basic idea used in the original approach to the
several different approaches are introduced. Hopefully, readers
can understand those ideas and can select a suitable approach

Table 9. Learning errors (RMSE) for 4-input Macky-Glass with full
covariance matrix reset

The RMS error at 100 epoch
Training 0.000913
Testing 0.00153

RMSE, root mean square errors.

Table 10. Learning errors (RMSE) for 4-input Macky-Glass
Strict Generalized

Epochs
10 100 10 100

Full P matrix
Training 0.004289 0.004259 0.002299 0.001523
Testing 0.007097 0.007105 0.003141 0.002385

Reduce P matrix
Training 0.004289 0.004259 0.00617 0.005027
Testing 0.007094 0.007103 0.007501 0.006355

RMSE, root mean square errors.

for their applications. For the dynamic system modelling, the
idea of recurrent network, which has been widely used in the
literature, is discussed. From the results reported in [14], it
is clearly evident that such a methodology is not a good ap-
proach even though lots of researchers have used this idea in
their approaches. A simple approach use a sufficient order in
a traditional NARX model will have the best results. Finally,
the effects on rule interaction in the use or RLS are reported in
this article. It can be observe that to use the reduced matrix, the
computational burden can be reduced significantly but the error
may be large especially for complicated systems. To reserve
the computational efficiency and to have nice learning perfor-
mance on error, we propose to add one final step in SONFIN by
resetting the P matrix and then performing the RLS algorithm
with the full covariance matrix.
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