• Title/Summary/Keyword: Fuzzy Set-based Fuzzy Model

Search Result 216, Processing Time 0.026 seconds

Fuzzy Linguistic Variable Based Approach for Safety Assessment of Human Body in ELF Electromagnetic Field Considering Power System States (계통상태를 고려한 ELF 전자계의 인체안전평가를 위한 퍼지언어변수 접근법)

  • 김상철;김두현;고은영
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.2
    • /
    • pp.70-79
    • /
    • 1997
  • This paper presents a study on the fuzzy linguistic variable based approach for safety assessment of human body in ELF electromagnetic field considering power system states. To cope with the demand in modern industry, the power system becomes larger in scale, higher in voltage. The advent of high voltage system has increased the relative importance of field effects. The analysis of ELF electromagnetic field based on Quasi-Static Method is introduced while the power system is included to model the expected and/or unexpected uncertainty caused by the load fluctuation and parameter changes. In order to analyze the power system, Monte Carlo simulation method and contingency analysis method are adopted in normal state and alert state, respectively. In the safety assessment of human body, the approach based on fuzzy linguistic variable is employed to overcome the shortcomings resulting from a crisp set concept. The suggested scheme is applied to a sample system(modified IEEE 14 bus system) to validate the usefulness.

  • PDF

Online Automatic Gauge Controller Tuning Method by using Neuro-Fuzzy Model in a Hot Rolling Plant

  • Choi, Sung-Hoo;Lee, Young-Kow;Kim, Sang-Woo;Hong, Sung-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1539-1544
    • /
    • 2005
  • The gauge control of the fishing mill is very important because more and more accurately sized hot rolled coils are demanded by customers recently. Because the mill constant and the plasticity coefficient vary with the specifications of the mill, the classification of steel, the strip width, the strip thickness and the slab temperature, the variation of these parameters should be considered in the automatic gauge control system(AGC). Generally, the AGC gain is used to minimize the effect of the uncertain parameters. In a practical field, operators set the AGC gain as a constant value calculated by FSU (Finishing-mill Set-Up model) and it is not changed during the operating time. In this paper, the thickness data signals that occupy different frequency bands are respectively extracted by adaptive filters and then the main cause of the thickness variation is analyzed. Additionally, the AGC gain is adaptively tuned to reduce this variation using the online tuning model. Especially ANFIS(Adaptive-Neuro-based Fuzzy Interface System) which unifies both fuzzy logics and neural networks, is used for this gain adjustment system because fuzzy logics use the professionals' experiences about the uncertainty and the nonlinearity of the system. Simulation is performed by using POSCO's data and the results show that proposed on-line gain adjustment algorithm has a good performance.

  • PDF

Application of the optimal fuzzy-based system on bearing capacity of concrete pile

  • Kun Zhang;Yonghua Zhang;Behnaz Razzaghzadeh
    • Steel and Composite Structures
    • /
    • v.51 no.1
    • /
    • pp.25-41
    • /
    • 2024
  • The measurement of pile bearing capacity is crucial for the design of pile foundations, where in-situ tests could be costly and time needed. The primary objective of this research was to investigate the potential use of fuzzy-based techniques to anticipate the maximum weight that concrete driven piles might bear. Despite the existence of several suggested designs, there is a scarcity of specialized studies on the exploration of adaptive neuro-fuzzy inference systems (ANFIS) for the estimation of pile bearing capacity. This paper presents the introduction and validation of a novel technique that integrates the fire hawk optimizer (FHO) and equilibrium optimizer (EO) with the ANFIS, referred to as ANFISFHO and ANFISEO, respectively. A comprehensive compilation of 472 static load test results for driven piles was located within the database. The recommended framework was built, validated, and tested using the training set (70%), validation set (15%), and testing set (15%) of the dataset, accordingly. Moreover, the sensitivity analysis is performed in order to determine the impact of each input on the output. The results show that ANFISFHO and ANFISEO both have amazing potential for precisely calculating pile bearing capacity. The R2 values obtained for ANFISFHO were 0.9817, 0.9753, and 0.9823 for the training, validating, and testing phases. The findings of the examination of uncertainty showed that the ANFISFHO system had less uncertainty than the ANFISEO model. The research found that the ANFISFHO model provides a more satisfactory estimation of the bearing capacity of concrete driven piles when considering various performance evaluations and comparing it with existing literature.

Blending Precess Optimization using Fuzzy Set Theory an Neural Networks (퍼지 및 신경망을 이용한 Blending Process의 최적화)

  • 황인창;김정남;주관정
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.488-492
    • /
    • 1993
  • This paper proposes a new approach to the optimization method of a blending process with neural network. The method is based on the error backpropagation learning algorithm for neural network. Since the neural network can model an arbitrary nonlinear mapping, it is used as a system solver. A fuzzy membership function is used in parallel with the neural network to minimize the difference between measurement value and input value of neural network. As a result, we can guarantee the reliability and stability of blending process by the help of neural network and fuzzy membership function.

  • PDF

A Study on Trend Impact Analysis Based of Adaptive Neuro-Fuzzy Inference System

  • Yong-Gil Kim;Kang-Yeon Lee
    • International journal of advanced smart convergence
    • /
    • v.12 no.1
    • /
    • pp.199-207
    • /
    • 2023
  • Trend Impact Analysis is a prominent hybrid method has been used in future studies with a modified surprise- free forecast. It considers experts' perceptions about how future events may change the surprise-free forecast. It is an advanced forecasting tool used in futures studies for identifying, understanding and analyzing the consequences of unprecedented events on future trends. In this paper, we propose an advanced mechanism to generate more justifiable estimates to the probability of occurrence of an unprecedented event as a function of time with different degrees of severity using adaptive neuro-fuzzy inference system (ANFIS). The key idea of the paper is to enhance the generic process of reasoning with fuzzy logic and neural network by adding the additional step of attributes simulation, as unprecedented events do not occur all of a sudden but rather their occurrence is affected by change in the values of a set of attributes. An ANFIS approach is used to identify the occurrence and severity of an event, depending on the values of its trigger attributes.

Fuzzy Measure-based Subset Interactive Models for Interactive Systems. (퍼지 측도를 이용한 상호 작용 시스템의 모델)

  • 권순학;스게노미치오
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.4
    • /
    • pp.82-92
    • /
    • 1997
  • In this paper, a fuzzy measure and integral-based model fnr interactive systems is proposed. The processes of model identification consists of the following three steps : (i) structure identification (ii) parameter identification and (iii) selection of an optimal model. An algorithm for the model structure identification using the well-known genetic algorithm ((;A) with a modified selection operator is proposed. A method for the identification of par;imetcrs corresponding to fuzzy measures is presented. A statistical model selection criterion is used for the selection of an optimal model among the candidates. Finally, experimental results obtained hy applying the proposed model to the subjective evaluation data set and the well-known time series data are presented to show the validity of the proposed model.

  • PDF

Estimating Real-time Inundation Vulnerability Index at Point-unit Farmland Scale using Fuzzy set (Fuzzy set을 이용한 실시간 지점단위 농경지 침수위험 지수 산정)

  • Eun, Sangkyu;Kim, Taegon;Lee, Jimin;Jang, Min-Won;Suh, Kyo
    • Journal of Korean Society of Rural Planning
    • /
    • v.20 no.2
    • /
    • pp.1-10
    • /
    • 2014
  • Smartphones change the picture of data and information sharing and make it possible to share various real-time flooding data and information. The vulnerability indicators of farmland inundation is needed to calculate the risk of farmland flood based on changeable hydro-meteorological data over time with morphologic characteristics of flood-damaged areas. To find related variables show the vulnerability of farmland inundation using the binary-logit model and correlation analysis and to provide vulnerability indicators were estimated by fuzzy set method. The outputs of vulnerability indicators were compared with the results of Monte Carlo simulation (MCS) for verification. From the result vulnerability indicators are applicable to mobile_based information system of farmland inundation.

Near optimal scheduling of flexible flow shop using fuzzy optimization technique (퍼지 최적화기법을 이용한 유연 흐름 생산시스템의 근사 최적 스케쥴링)

  • Park, Seung-Kyu;Lee, Chang-Hoon;Jang, Seok-Ho;Woo, Kwang-Bang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.2
    • /
    • pp.235-245
    • /
    • 1998
  • This paper presents the fuzzy optimization model based scheduling methodology for the efficient production control of a FFS(FIexible Flow Shop) under the uncertain production environment. To develop the methodology, a fuzzy optimization technique is introduced in which the uncertain production capacity caused by the random events like the machine breakdowns or the absence of workers is modeled by fuzzy number. Since the problem is NP hard, the goal of this study is to obtain the near optimal but practical schedule in an efficient way. Thus, Lagrangian relaxation method is used to decompose the problem into a set of subproblems which are easier to solve than the original one. Also, to construct the feasible schedule, a heuristic algorithm was proposed. To evaluate the performance of the proposed method, computational experiments, based on the real factory data, are performed. Then, the results are compared with those of the other methods, the deterministic one and the existing one used in the factory, in the various performance indices. The comparison results demonstrate that the proposed method is more effective than the other methods.

  • PDF

Design of Fault Diagnostic System based on Neuro-Fuzzy Scheme (퍼지-신경망 기반 고장진단 시스템의 설계)

  • Kim, Sung-Ho;Kim, Jung-Soo;Park, Tae-Hong;Lee, Jong-Ryeol;Park, Gwi-Tae
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.10
    • /
    • pp.1272-1278
    • /
    • 1999
  • A fault is considered as a variation of physical parameters; therefore the design of fault detection and identification(FDI) can be reduced to the parameter identification of a non linear system and to the association of the set of the estimated parameters with the mode of faults. Neuro-Fuzzy Inference System which contains multiple linear models as consequent part is used to model nonlinear systems. Generally, the linear parameters in neuro-fuzzy inference system can be effectively utilized to fault diagnosis. In this paper, we proposes an FDI system for nonlinear systems using neuro-fuzzy inference system. The proposed diagnostic system consists of two neuro-fuzzy inference systems which operate in two different modes (parallel and series-parallel mode). It generates the parameter residuals associated with each modes of faults which can be further processed by additional RBF (Radial Basis Function) network to identify the faults. The proposed FDI scheme has been tested by simulation on two-tank system.

  • PDF

Service Development using Fuzzy QFD in the banking industry

  • Yu, Eun Jin;Kwak, Choonjong
    • Journal of Korean Society for Quality Management
    • /
    • v.43 no.1
    • /
    • pp.103-124
    • /
    • 2015
  • Purpose: This paper proposes a structured approach based on Quality Function Deployment (QFD) for service development in the banking industry. Methods: SERVQUAL is modified and adopted as a tool to understand customer requirements for the QFD. Fuzzy theory is used to resolve the subjectivity and ambiguity of customer requirements and satisfaction. This research also uses the importance- satisfaction model to construct an additional House of Quality (HOQ). A pair of houses of quality provides a confluence of results to avoid a risk of depending solely on the results of a single HOQ. Results: A case study is introduced with three domestic banks. Conclusion: The proposed approach effectively addresses a service development problem.