• Title/Summary/Keyword: Fuzzy Rules

Search Result 1,218, Processing Time 0.029 seconds

Position and Velocity Control of AM1 Robot Using Self-Organization Fuzzy Control Technology (자기구성 퍼지 제어기법에 의한 수직다관절(AM1) 로봇의 위치 및 속도 제어)

  • 김종수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.165-170
    • /
    • 2000
  • In this paper, it is presented a new technique to the design and real-time implementation of fuzzy control system based-on digital signal processors in order to improve the precision and robustness for system of industrial robot. Fuzzy control has emerged as one of the most active and fruitful areas for research in the applications of fuzzy set theory, especially in the real of industrial processes. In this thesis, a self-organizing fuzzy controller for the industrial robot manipulator with a actuator located at the base is studied. A fuzzy logic composed of linguistic conditional statements is employed by defining the relations of input-output variable of the controller, in the synthesis of a FLC, one of the most difficult problems is the determination of linguistic control rules from the human operators. To overcome this difficult, SOFC is proposed for a hierachical control structure consisting of basic level and high level that modify control rules.

  • PDF

Fuzzy Classification Rule Learning by Decision Tree Induction

  • Lee, Keon-Myung;Kim, Hak-Joon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.1
    • /
    • pp.44-51
    • /
    • 2003
  • Knowledge acquisition is a bottleneck in knowledge-based system implementation. Decision tree induction is a useful machine learning approach for extracting classification knowledge from a set of training examples. Many real-world data contain fuzziness due to observation error, uncertainty, subjective judgement, and so on. To cope with this problem of real-world data, there have been some works on fuzzy classification rule learning. This paper makes a survey for the kinds of fuzzy classification rules. In addition, it presents a fuzzy classification rule learning method based on decision tree induction, and shows some experiment results for the method.

Complex LMS Fuzzy Adaptive Equalizer with Decision Feedback (판정궤환이 있는 복소 LMS 퍼지 적응 등화기)

  • 이상연;김재범;이기용;이충웅
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.10
    • /
    • pp.2579-2585
    • /
    • 1996
  • In this paper, a complex fuzzy adaptive decision feedback equalizer(CFADFE) based on the LMS algorithm is proposed. The propoed equalizer is based on the complex fuzzy adaptive equalizer. The CFADFE isconstructed from a set of changeable complex fuzzy IF-THEN rules, where the 'IF' part of the rule is characterized by the state from a set of changealble complex fuzzy IF-THEN rules, where the 'IF' part of the rule is characterized by the state of the desision feedback. the role of decision feedback is to reduce the computational complexity. Computer simulation of the decision feedback. The role of decision feedback is to reduce the computational complexity. Computer simulation shosw that the CFADFE notonly reduces the computational complexity but also improves the performance compared with the conventional complex fuzzy adaptive equalizers. We also show that the adaptation speed is greatly improved by incorporating some linguistic information about the channel into the equalzer. It is applied to M-ary QAM digital communication system with linear and nonlinear complex channel characteristics.

  • PDF

Adaptive Classification of Subimages by the Fuzzy System for Image Data Compression (퍼지시스템에 의한 부영상의 적응분류와 영상데이타 압축에의 적용)

  • Kong, Seong-Gon
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.7
    • /
    • pp.1193-1205
    • /
    • 1994
  • This paper presents a fuzzy system that adaptively classifies subimages to four classes according to image activity distribution. In adaptive transform image coding, subimage classification improves the compression performance by assigning different bit maps to different classes. A conventional classification method sorts subimages by their AC energy and divides them to classes with equal number of subimages. The fuzzy system provides more flexible classification to natural images with various distribution of image details than does the conventional method. Clustering of training data in the input-output product space generated the fuzzy rules for subimage classification. The fuzzy system of small number of fuzzy rules successfully classified subimages to improve the compression performance of the transform image coding without sorting of AC energies.

Design of fuzzy Independence Array Structure using DNA Coding Optimization (DNA 코딩 최적화에 의한 독립 배열구조의 퍼지규칙 설계)

  • Kwon, Yang-Won;Choi, Yong-Sun;Han, Il-Suk;Ahn, Tae-Chon
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.3019-3021
    • /
    • 2000
  • In this paper. a new fuzzy modeling algorithm is proposed : it can express a given unknown system with a small number of fuzzy rules and be easily implemented. This method uses an independent array instead of a lattice form for a premise membership function. For the purpose of getting the initial value of fuzzy rules. the method uses the fuzzy c-means clustering method. To optimally tune the initial fuzzy rule. the DNA coding method is also utilized at same time. Box and Jenkins's gas furnace data is used to illustrate the validity of the proposed algorithm.

  • PDF

A Study on Intelligent Control of Robot Manipulator Using Self-Organization Fuzzy Control Technology (자기구성 퍼지 제어기법에 의한 로봇 매니퓰레이터의 지능제어에 관한 연구)

  • 김종수;김용태;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.193-198
    • /
    • 1999
  • In this paper, it is presented a new technique to the design and real-time implementation of fuzzy control system based-on digital signal processors in order to improve the precision and robustness for system of industrial robot. Fuzzy control has emerged as one of the most active and fruitful areas for research in the applications of fuzzy set theory, especially in the real of industrial processes. In this thesis, a self-organizing fuzzy controller for the industrial robot manipulator with a actuator located at the base is studied. A fuzzy logic composed of linguistic conditional statements is employed by defining the relations of input-output variable of the controller, In the synthesis of a FLC, one of the most difficult problems is the determination of linguistic control rules from the human operators. To overcome this difficult, SOFC is proposed for a hierarchical control structure consisting of basic level and high level that modify control rules.

  • PDF

Co-evolutionary Genetic Algorithm for Designing and Optimaizing Fuzzy Controller

  • Byung, Jun-Hyo;Bo, Sim-Kwee
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.354-360
    • /
    • 1998
  • In general, it is very difficult to find optimal fuzzy rules by experience when a system is dynamical and/or complex. Futhermore proper fuzzy partitioning is not deterministic and there is no unique solution. Therefore we propose a new design method of an optimal fuzzy logic controller, that is a co-evolutionary genetic algorithm finding optimal fuzzy rule and proper membership functions at the same time. We formalize the relation between fuzzy rules and membership functions in terms of fitness. We review the typical approaching methods to co-evolutionary genetic algorithms , and then classify them by fitness relation matrix. Applications of the proposed method to a path planning problem of autonomous mobile robots when moving objects exist are presented to demonstrate the performance and effectiveness of the method.

  • PDF

Design of Type-2 FCM-based Fuzzy Inference Systems and Its Optimization (Type-2 FCM 기반 퍼지 추론 시스템의 설계 및 최적화)

  • Park, Keon-Jun;Kim, Yong-Kab;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.11
    • /
    • pp.2157-2164
    • /
    • 2011
  • In this paper, we introduce a new category of fuzzy inference system based on Type-2 fuzzy c-means clustering algorithm (T2FCM-based FIS). The premise part of the rules of the proposed model is realized with the aid of the scatter partition of input space generated by Type-2 FCM clustering algorithm. The number of the partition of input space is composed of the number of clusters and the individual partitioned spaces describe the fuzzy rules. Due to these characteristics, we can alleviate the problem of the curse of dimensionality. The consequence part of the rule is represented by polynomial functions with interval sets. To determine the structure and estimate the values of the parameters of Type-2 FCM-based FIS we consider the successive tuning method with generation-based evolution by means of real-coded genetic algorithms. The proposed model is evaluated with the use of numerical experimentation.

The Development of Genetic Fuzzy System for Estimating Link Traveling Speed (주행속도 추정을 위한 Genetic Fuzzy System의 개발)

  • Youn, Yeo-Hun;Lee, Hong-Chul;Kim, Yong-Sik
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.29 no.1
    • /
    • pp.32-40
    • /
    • 2003
  • In this study, we develop the Genetic Fuzzy System(GFS) to estimate the link traveling speed. Based on the genetic algorithm, we can get the fuzzy rules and membership functions that reflect more accurate correlation between traffic data and speed. From the fact that there exist missing links that lack traffic data, we added a Case Base Reasoning(CBR) to GFS to support estimating the speed of missing links. The case base stores the fuzzy rules and membership functions as its instances. As cases are accumulated, the case base comes to offer appropriate cases to missing links. Experiments show that the proposed GFS provides the more accurate estimation of link traveling speed than existing methods.

Automatic Fuzzy Model Identification Using Genetic Algorithm (유전 알고리듬을 이용한 퍼지모델의 자동 동정)

  • Son, You-Seck;Chnng, Wook;Park, Jin-Bae;Joo, Young-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1009-1011
    • /
    • 1996
  • This paper presents an approach to building multi-input and single-output fuzzy models for nonlinear data-based systems. Such a model is composed of fuzzy rules, and its output is inferred by simplified reasoning. Optimal structure and membership parameters for a fuzzy model are automatically and simultaneously identified by GA(Genetic Algorithm). Numerical examples are provided to evaluate the feasibility of the proposed approach. Comparison shows that the suggested approach can produce a fuzzy model with higher accuracy and a smaller number of fuzzy rules than the ones achieved previously in other methods.

  • PDF