본 연구는 도시홍수 피해저감을 위한 비구조적 대책의 일환으로 배수펌프장의 효율적인 운영방안을 제시하고자 한다. 배수펌프장 내의 수위를 뉴로-퍼지모형을 통하여 예측하고 예측되는 내수위에 따라 유전자 알고리즘 기법을 적용하여 배수펌프장의 운영룰을 결정하고자 한다. 뉴로-퍼지모형 구축시 배수구역의 지형적 특성을 반영하기 위하여 공간적 매개변수를 고려한 GeoANFIS모형을 개발하였고 배수펌프장 내 최고수위를 저하시키면서 반복적인 정지와 운영이 발생하지 않도록 벌칙유형의 유전자 알고리즘을 적용하였다. 마포 배수구역 내 5개의 배수펌프장(마포, 합정, 상수, 봉인, 당인)에 대하여 개발 모형의 적용성을 검증하였다. 이러한 운영룰의 개발로 효과적으로 내배수 시설을 운영할 수 있을 것으로 판단된다.
영상처리를 통한 이동 물체 인식과 화질 개선 등의 연구에서 조명 변화가 성능에 큰 영향을 미치기 때문에 조명 변환에 대한 대응은 컴퓨터 비전 응용 분야에서의 중요한 관심사 중 하나이다. 조명 변화를 감지할 수 있게 되면 변화가 있는 시점에서부터 적절한 개선 알고리즘을 적용함으로써 인식률 향상 및 화질 개선 효과를 증대시킬 수 있다. 이에 본 연구에서는 급격한 조명 변화를 감지함에 있어 실시간성을 얻기 위하여 지역 정보를 이요하고 퍼지 논리를 도입하여 이를 효과적으로 감지하는 방법을 제안한다. 급격한 조명 변화를 감지하는 효과적인 방법으로 모서리 영역과 가운데 영역에 대한 각각의 히스토그램의 평균과 편차, 그리고 변화 추이를 반영하기 위하여 이전 프레임의 각 영역에 대한 히스토그램의 평균과 편차와의 변화량을 입력으로 급격한 조명 변화가 있을 때 입력 값의 변화 패턴을 퍼지 규칙으로 만들어 조명 변화를 감지하도록 하였다. 또한 움직이는 물체에 가려 발생하는 변화와 구별하기 위하여 전체 영역에 대한 평균과 편차 변화량을 도입하여 논리적으로 추론하여 차이를 구별할 수 있도록 하였고 점진적으로 조명이 변화하는 것을 감지할 수 있도록 하였다. 다양한 테스트 데이터에 대해 객관적인 정확도 측정 기법을 이용하여 민감도와 특이도를 계산하여 제안한 방법의 효용성을 보였다. 적응형 뉴로-퍼지 추론시스템을 도입하여 대비제한 적응 히스토그램 평활화 (CLAHE)의 매개 변수를 자동으로 선택할 수 있는 방법을 제안하여 급격한 조명의 변화를 감지한 결과를 바탕으로 화질을 개선할 수 있음을 보였다.
This paper is proposed HAI controller for high performance of induction motor drive. The design of this algorithm based on FNN controller that is implemented using fuzzy control and neural network. This controller uses fuzzy rule as training patterns of a neural network. The control performance of the HAI controller is evaluated by analysis for various operating conditions. The results of analysis prove that the proposed control system has strong high performance and robustness to parameter variation, and steady-state accuracy and transient response.
본 논문에서는 발암물질 저감을 위하여 정수장 염소투입공정 중 전염소 주입에 따른 침전지의 염소 증발량이 주야간, 계절별 현격한 차이가 발생함에 따라 시간대별/계절별/날씨별 유입목표 잔류염소를 변경하고자 운영자의 경험에 기반한 퍼지 모델링 기법을 도입하였다. 퍼지에 의해 설정된 목표 잔류염소농도를 유지하기 위하여 침전지 유입부에 잔류염소 계측기를 추가 설치하여 피드백 Loop 시간을 최소화하였고 지연시간이 긴 시스템에 적용되는 이중 피드백 제어시스템인 캐스케이드 제어를 병행 실시하였다. 이를 통해 소독공정의 고유특성인 시간지연에 대한 선제적 대응 및 침전지 잔류염소농도 변화폭을 7.3배가량 안정화를 시키고 염소소모량을 저감하여 안정적이고 경제적인 물 공급이 가능하도록 하였다.
본 논문에서는 복잡하고 비선형적인 시스템을 위하여 최적 면역 알고리즘의 개선된 클론선택에 기반을 둔 최적FNN 설계방법을 제안한다. FNN은 퍼지추론의 간략 추론과 학습방법으로는 오류역전파 알고리즘을 하였고 멤버쉽함수의 파라미터, 학습률 및 모멘텀 계수들을 선정하기 위하여 개선된 클론 선택을 사용하는 방법을 도입하였다. 제안한 알고리즘은 생체의 면역반응에 기초를 둔 면역알고리즘의 클론선택을 기본으로 분화율을 조절하여 성능을 개선하였다. 그 과정을 통하여 다양한 항체들을 생성하고 목적함수나 제한조건과 같은 항원들에 대하여 가장 높은 친화도를 가지는 항체를 최적 항체로 선택하였다. 제안된 알고리즘의 성능을 평가하기 위하여 가스로공정과 교통경로선택 공정을 사용한다.
많은 센서 네트워크 응용에서, 센서 노드들은 개방된 환경에 배포되므로 노드의 암호 키 완전히 훼손하는 물리 공격에 취약하다. 위조 감지 보고서는 훼손된 노드를 통하여 네트워크에 주입될 수 있으며, 이는 거짓 경보를 울릴 수 있을 뿐만 아니라 전지로 동작하는 네트워크의 제한된 에너지 자원을 고갈시킬 수 있다. Fan Ye 등은 이에 대한 대안으로 전송과정에서 허위 보고서를 검증할 수 있는 통계적 여과 기법을 제안하였다. 이 기법에서 허위 보고서에 대한 검증이 가능한 인증키의 노출 정도인 훼손 허용도를 나타내는 분할 값은 전역 키 풀이 나눠진 구획들의 수로 소비 에너지와 서로 대치되는 관계에 있어 그 결정이 매우 중요하다. 전체 구획들의 인증키가 노출될 경우 허위 보고서를 더 이상 검증을 할 수 없고 각 구획들의 노출되지 않은 나머지 인증키들은 인증키로써의 기능도 잃게 된다. 본 논문에서는 전역 키 풀 분할에 퍼지 규칙 시스템을 사용해 다수의 구획들로 나누는 퍼지 기반의 적응형 분할 기법을 제안한다. 퍼지 로직은 훼손된 구획의 수, 노드의 밀도와 잔여 에너지양을 고려하여 분할 값을 결정한다. 이 퍼지 기반의 분할 값은 충분한 훼손 허용도를 제공하면서 에너지를 보존할 수 있다.
개방된 환경에 배치된 센서 네트워크의 모든 센서 노드들은 물리적 위협에 취약하다. 공격자는 노드를 물리적으로 포획하여 데이터 인증에 사용하는 인증키와 같은 보안 정보들을 획득할 수 있다. 공격자는 포획된 노드, 즉 훼손된 노드들 통해 허위 보고서를 센서 네트워크에 쉽게 삽입시킬 수 있다. 이렇게 삽입된 허위 보고서는 사용자로 하여금 허위 경보를 유발시킬 수 있을 뿐만 아니라, 전지로 동작하는 센서 네트워크의 제한된 에너지를 고갈시킨다. Fan Ye 등은 이런 위협에 대한 대안으로 전송과정에서 허위 보고서를 검증할 수 있는 통계적 여과 기법을 제안하였는데, 이 기법에서는 허위 보고서에 대한 보안성과 소비 에너지양이 서로 대치되는 관계에 있기 때문에, 허위 보고서 검증을 위한 메시지 인증 코드의 수를 나타내는 보안 경계 값의 결정은 매우 중요하다. 본 논문에서는 충분한 보안성을 제공하면서 에너지를 보존할 수 있는 보안 경계 값 결정을 위한 퍼지 규칙 시스템을 제안한다. 퍼지 로직은 노드가 훼손되지 않은 인증키를 가지고 있을 확률, 훼손된 구획의 수, 노드의 잔여 에너지를 고려하여 보안 경계 값을 결정한다. 퍼지 기반 보안 경계 값은 충분한 보안성을 제공하면서 에너지를 보존할 수 있는 보안 경계 값을 결정 할 수 있다.
본 논문에서는 사용자의 재생 시간을 이용한 멀티미디어 추천 시스템을 제안한다. 제안하는 시스템은 사용자에 의해 요청된 멀티미디어 콘텐츠와 그것이 재생된 시간을 기록하고, 기록된 데이터를 가지고 퍼지 연관규칙 탐사 방법을 이용하여 사용자가 관심을 보일 만한 멀티미디어 콘텐츠와 사용자에 의해 재생된 시간에 기반하여 선호 등급을 예측한다. 제안하는 방법은 사용자의 선호 정보를 별도로 입력 받지 않고도 예측된 선호 등급에 따라서 추천 목록에 대한 선호정도를 예측할 수 있으며, 거짓된 선호 정보의 유입을 방지하는 장점이 있다. 유효성 검증을 위해 제안하는 시스템을 구현하고 실험한 결과, 사용자로부터 입력 받은 선호 정보를 포함하지 않은 트랜잭션으로부터 사용자가 높은 선호도를 보일 것이라 예상되는 추천 목록을 선별하여 추천 시스템에 적용할 수 있음을 확인하였다.
본 연구는 뉴로퍼지 네트워크와 다항식 뉴럴네트워크를 합성한 하이브리드 모델링 구조인 고급 뉴로퍼지 다항식 네트워크(Advanced neurofuzzy polynomial networks ; ANFPN)를 제안한다. 제안된 네트워크 구조는 높은 비선형 규칙 기반 모델로, CI(Computational Intelligence)의 기술, 즉 퍼지집합, 뉴럴네트워크, 유전자 알고리즘에 의해 설계되어진다. 뉴로퍼지 네트워크는 ANFPN 구조의 전반부를, 다항식 뉴럴네트워크는 후반부를 구성한다. ANFPN의 전반부에서, 뉴로퍼지 네트워크는 간략추론, 오류역전파 학습 규칙을 이용한다. 멤버쉽함수의 파라미터, 학습율, 모멘텀 계수는 유전자 최적화를 이용하여 조절된다. ANFPN의 후반부 구조로서 다항식 뉴럴네트워크는 학습을 통해 생성되는(전개되는) 유연한 네트워크 구조이다. 특히 다항식 뉴럴네트워크의 층과 노드 수는 고정되어 있지 않고 동적으로 생성된다. 본 연구에서는, 2가지 형태의 ANFPN 구조를 제안한다. 즉 기본 구조와 변형된 구조이다. 여기서 기본 구조와 변형된 구조는 다항식 뉴럴네트워크 구조의 각 층에서 입력변수의 수와 회귀다항식의 차수에 의존한다. 두 결합 구조의 특징 때문에 공정 시스템의 비선형적인 특성을 고려할 수 있고 보다 우수한 예측능력을 가진 좋은 출력선응을 얻을 수 있게 한다. ANFPN의 유용성과 실용성은 2개의 수치 예제를 통해 논의된다. 제안된 ANFPN은 기존의 모델보다 높은 정밀도와 예측능력을 가진 모델을 생성함을 보인다.
Currently, agricultural facilities are evaluated using either basic inspections or detailed analysis. However, conventional analyses as well as methods based on fuzzy logic and rule of thumb have not been very successful in providing a clear relationship between rating and real state of agricultural facilities, because they can't provide exactly acceptable reliability of degraded structures with manager or supervisor. Therefore, in this stage, we must define probabilistic variables for representing degradation of structures being given damages during a survival time. This paper describes the application of neural network system in developing the relation between subjective ratings and parameters of agricultural reservoir as well as that between subjective and analytical ratings. It is shown that neural networks can be trained and used successfully in estimating a rating based on several parameters. The specific application problem for agricultural reservoir in the rural area of Korea is presented and database is constructed to maintain training data set, the information of inspection and facilities. This study showed that a successful training of a neural network could be useful, especially if the input data set for target problem contains parameters with a diverse combination of inter-correlation coefficients. And the networks had a prediction rating of about $^{\ast}^{\ast}^{\ast}%$. The neural network system is expected to show high performance fairly in estimate than statistical method to use equation that is consisted of very lowly interrelated variables.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.