• Title/Summary/Keyword: Fuzzy Reasoning System

Search Result 231, Processing Time 0.029 seconds

Characteristics of Input-Output Spaces of Fuzzy Inference Systems by Means of Membership Functions and Performance Analyses (소속 함수에 의한 퍼지 추론 시스템의 입출력 공간 특성 및 성능 분석)

  • Park, Keon-Jun;Lee, Dong-Yoon
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.4
    • /
    • pp.74-82
    • /
    • 2011
  • To do fuzzy modelling of a nonlinear process needs to analyze the characteristics of input-output of fuzzy inference systems according to the division of entire input spaces and the fuzzy reasoning methods. For this, fuzzy model is expressed by identifying the structure and parameters of the system by means of input variables, fuzzy partition of input spaces, and consequence polynomial functions. In the premise part of the fuzzy rules Min-Max method using the minimum and maximum values of input data set and C-Means clustering algorithm forming input data into the clusters are used for identification of fuzzy model and membership functions are used as a series of triangular, gaussian-like, trapezoid-type membership functions. In the consequence part of the fuzzy rules fuzzy reasoning is conducted by two types of inferences such as simplified and linear inference. The identification of the consequence parameters, namely polynomial coefficients, of each rule are carried out by the standard least square method. And lastly, using gas furnace process which is widely used in nonlinear process we evaluate the performance and the system characteristics.

Context Aware System based on Bayesian Network driven Context Reasoning and Ontology Context Modeling

  • Ko, Kwang-Eun;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.4
    • /
    • pp.254-259
    • /
    • 2008
  • Uncertainty of result of context awareness always exists in any context-awareness computing. This falling-off in accuracy of context awareness result is mostly caused by the imperfectness and incompleteness of sensed data, because of this reasons, we must improve the accuracy of context awareness. In this article, we propose a novel approach to model the uncertain context by using ontology and context reasoning method based on Bayesian Network. Our context aware processing is divided into two parts; context modeling and context reasoning. The context modeling is based on ontology for facilitating knowledge reuse and sharing. The ontology facilitates the share and reuse of information over similar domains of not only the logical knowledge but also the uncertain knowledge. Also the ontology can be used to structure learning for Bayesian network. The context reasoning is based on Bayesian Networks for probabilistic inference to solve the uncertain reasoning in context-aware processing problem in a flexible and adaptive situation.

Implemented of Fuzzy PI+PD Logic circuits for DC Servo Control Using Decomposition of $\alpha$-level fuzzy set ($\alpha$-레벨 퍼지집합 분해에 의한 직류 서보제어용 퍼지 PI+PD 로직회로 구현)

  • Hong, J.P.;Won, T.H.;Jeong, J.W.;Lee, Y.S.;Lee, S.M.;Hong, S.I.
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.127-129
    • /
    • 2008
  • This paper describes a method of approximate reasoning for fuzzy control of servo system, based on decomposition of -level fuzzy sets. It is propose that logic circuits for fuzzy PI+PD are a body from fuzzy inference to defuzzificaion in cases where the output variable u directly is generated PWM. The effectiveness for robust and faster response of the fuzzy control scheme is verified for a variable parameter by comparison with a PID control and fuzzy control. A position control of DC servo system with a fuzzy logic controller successfully demonstrated.

  • PDF

Self-organizing Networks with Activation Nodes Based on Fuzzy Inference and Polynomial Function (펴지추론과 다항식에 기초한 활성노드를 가진 자기구성네트윅크)

  • 김동원;오성권
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.15-15
    • /
    • 2000
  • In the past couple of years, there has been increasing interest in the fusion of neural networks and fuzzy logic. Most of the existing fused models have been proposed to implement different types of fuzzy reasoning mechanisms and inevitably they suffer from the dimensionality problem when dealing with complex real-world problem. To overcome the problem, we propose the self-organizing networks with activation nodes based on fuzzy inference and polynomial function. The proposed model consists of two parts, one is fuzzy nodes which each node is operated as a small fuzzy system with fuzzy implication rules, and its fuzzy system operates with Gaussian or triangular MF in Premise part and constant or regression polynomials in consequence part. the other is polynomial nodes which several types of high-order polynomials such as linear, quadratic, and cubic form are used and are connected as various kinds of multi-variable inputs. To demonstrate the effectiveness of the proposed method, time series data for gas furnace process has been applied.

  • PDF

Fuzzy Neural Controller with Additive Hybrid Operators

  • Hayashi, Yoichi;Keller, James M.;Chen, Zhihong
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1118-1120
    • /
    • 1993
  • Fuzzy logic places a considerable burden on an inference engine for applications such as control or approximate reasoning. Various neural network architectures have been proposed to deal with the computational task, and yet, maintain flexibility in the desired traits of the final system. Recently, we introduced a trainable network architecture whose nodes implement weighted Yager additive hybrid operators for fuzzy logic inference in an approximate reasoning setting. In this paper we examine the utility of such networks for control situations. We show that they are capable of learning control functions which are piece-wise monotonic in each of the variables. The learning ability is demonstrated through an example.

  • PDF

A study on the fuzzy simulation for real world system (실세계 시스템의 퍼지 시뮬레이션에 관한 연구)

  • 이은순
    • Journal of the Korea Society for Simulation
    • /
    • v.6 no.2
    • /
    • pp.105-115
    • /
    • 1997
  • Fuzzy simulation predicts the behaviors of real system based on a model by qualitative reasoning methods and simulates the representation of ambiguous values on the real system variables using the theory of fuzzy sets. During the simulation, however, unnecessary behaviors due to the fuzzy representation are created, and the number of states of system variables changing temporally in the time axis is drastically increased. In this paper, we present a new algorithm which eliminates the spurious behaviors from the great number of result values due to the results of the fuzzy operation, and reduces the number of the states by transforming the complex state transition rules. This paper also shows the easy implementation of the simulation by using the existing package while it is difficult on the PC due to the complexities of the calculation.

  • PDF

Simulator Output Knowledge Analysis Using Neural network Approach : A Broadand Network Desing Example

  • Kim, Gil-Jo;Park, Sung-Joo
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1994.10a
    • /
    • pp.12-12
    • /
    • 1994
  • Simulation output knowledge analysis is one of problem-solving and/or knowledge adquistion process by investgating the system behavior under study through simulation . This paper describes an approach to simulation outputknowldege analysis using fuzzy neural network model. A fuzzy neral network model is designed with fuzzy setsand membership functions for variables of simulation model. The relationship between input parameters and output performances of simulation model is captured as system behavior knowlege in a fuzzy neural networkmodel by training examples form simulation exepreiments. Backpropagation learning algorithms is used to encode the knowledge. The knowledge is utilized to solve problem through simulation such as system performance prodiction and goal-directed analysis. For explicit knowledge acquisition, production rules are extracted from the implicit neural network knowledge. These rules may assit in explaining the simulation results and providing knowledge base for an expert system. This approach thus enablesboth symbolic and numeric reasoning to solve problem througth simulation . We applied this approach to the design problem of broadband communication network.

  • PDF

Knowledge Discovery Process from the Web for Effective Knowledge Creation: Application to the Stock Market (효과적인 지식창출을 위한 웹 상의 지식채굴과정 : 주식시장에의 응용)

  • Kim, Kyoung-Jae;Hong, Tae-Ho;Han, In-Goo
    • Knowledge Management Research
    • /
    • v.1 no.1
    • /
    • pp.81-90
    • /
    • 2000
  • This study proposes the knowledge discovery process for the effective mining of knowledge on the web. The proposed knowledge discovery process uses the Prior knowledge base and the Prior knowledge management system to reflect tacit knowledge in addition to explicit knowledge. The prior knowledge management system constructs the prior knowledge base using a fuzzy cognitive map, and defines information to be extracted from the web. In addition, it transforms the extracted information into the form being handled in mining process. Experiments using case-based reasoning and neural network" are performed to verify the usefulness of the proposed model. The experimental results are encouraging and prove the usefulness of the proposed model.

  • PDF

A Fuzzy Logic System for Detection and Recognition of Human in the Automatic Surveillance System (유전자 알고리즘과 퍼지규칙을 기반으로한 지능형 자동감시 시스템의 개발)

  • 장석윤;박민식;이영주;박민용
    • Proceedings of the IEEK Conference
    • /
    • 2001.06c
    • /
    • pp.237-240
    • /
    • 2001
  • An image processing and decision making method for the Automatic Surveillance System is proposed. The aim of our Automatic Surveillance System is to detect a moving object and make a decision on whether it is human or not. Various object features such as the ratio of the width and the length of the moving object, the distance dispersion between the principal axis and the object contour, the eigenvectors, the symmetric axes, and the areas if the segmented region are used in this paper. These features are not the unique and decisive characteristics for representing human Also, due to the outdoor image property, the object feature information is unavoidably vague and inaccurate. In order to make an efficient decision from the information, we use a fuzzy rules base system ai an approximate reasoning method. The fuzzy rules, combining various object features, are able to describe the conditions for making an intelligent decision. The fuzzy rule base system is initially constructed by heuristic approach and then, trained and tasted with input/output data Experimental result are shown, demonstrating the validity of our system.

  • PDF

A Study on Performance Assessment Methods Using Fuzzy Logic

  • Chae, Gyoo-Yong;Jang, Gil-Sang;Joo, Jae-Hun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.9 no.1
    • /
    • pp.92-102
    • /
    • 2004
  • Performance assessment was introduced to improve self-directed learning and method of assessment for differenced learning when the seventh educational curriculum was enforced. Written examinations often fail to properly assess students higher thinking abilities ad problem solving abilities. Performance assessment addresses this drawback and also allows normalization of class and school quality. However, performance assessment also has drawbacks that could lead to faulty assessment due to lack of fairness, reliability and validity of grading, ambiguity of grading standard etc. This study proposes a fuzzy performance assessment system to address the drawbacks of the conventional performance assessment. This paper presents in objective and reliable performance assesment method through fuzzy reasoning, design of fuzzy membership function. We define a fuzzy rule analyzing factor that influences in each sacred ground of performance assessment and accounts for the principle subject The proposed performance assessment method divides into three categories, namely, formation estimation subject estimation and design of membership function. Performance assessment result that is worked through fuzzy performance assessment system can reduce the burden of appraisal's fault and provide. We fair and reliable assessment results through grading that have correct standard mid consistency to students.

  • PDF