• Title/Summary/Keyword: Fuzzy Reasoning Method

Search Result 177, Processing Time 0.023 seconds

A study of MIMO Fuzzy system with a Learning Ability (학습기능을 갖는 MIMO 퍼지시스템에 관한 연구)

  • Park, Jin-Hyun;Bae, Kang-Yul;Choi, Young-Kiu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.3
    • /
    • pp.505-513
    • /
    • 2009
  • Z. Cao had proposed NFRM(new fuzzy reasoning method) which infers in detail using relation matrix. In spite of the small inference rules, it shows good performance than mamdani's fuzzy inference method. But the most of fuzzy systems are difficult to make fuzzy inference rules in the case of MIMO system. The past days, We had proposed the MIMO fuzzy inference which had extended a Z. Cao's fuzzy inference to handle MIMO system. But many times and effort needed to determine the relation matrix elements of MIMO fuzzy inference by heuristic and trial and error method in order to improve inference performances. In this paper, we propose a MIMO fuzzy inference method with the learning ability witch is used a gradient descent method in order to improve the performances. Through the computer simulation studies for the inverse kinematics problem of 2-axis robot, we show that proposed inference method using a gradient descent method has good performances.

Fuzzy PID Controller Design for Tracking Control (퍼지PID제어를 이용한 추종 제어기 설계)

  • 김봉주;정정주
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.68-68
    • /
    • 2000
  • This paper presents a fuzzy modified PID controller that uses linear fuzzy inference method. In this structure, the proportional and derivative gains vary with the output of the system under control. 2-input PD type fuzzy controller is designed to obtain the varying gains. The proposed fuzzy PID structure maintains the same performance as the general-purpose linear PID controller, and enhances the tracking performance over a wide range of input. Numerical simulations and experimental results show the effectiveness of the fuzzy PID controller in comparison with the conventional PID controller.

  • PDF

A Study on Performance Assessment Methods by Using Fuzzy Membership Function and Fuzzy Reasoning

  • Je, Sung-kwan;Jang, Hye-Won;Shin, Bok-Suk;Kim, Cheol-Ki;Jaehyun Cho;Kim, Kwang-Baek
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.608-611
    • /
    • 2003
  • Performance assessment was introduced to improvement of self-directed learning and method of assessment for differenced learning as the seventh educational curriculum is enforced. Performance assessment is overcoming limitation about problem solving ability and higher thinking abilities assessment that is problem of a written examination and get into the spotlight by way for quality of class and school normalization. But performance assessment has problems about possibilities of assessment fault by appraisal, fairness, reliability, and validity of grading, ambiguity of grading standard, difficulty about objectivity security etc. This study proposes fuzzy performance assessment system to solve problem of the conventional performance assessment. This paper presented an objective and reliable performance assessment method through fuzzy reasoning, design fuzzy membership function and define fuzzy rule analyzing factor that influence in each sacred ground of performance assessment to account principle subject. Also, performance assessment item divides by formation estimation and subject estimation and designed membership function in proposed performance assessment method. Performance assessment result that is worked through fuzzy performance assessment system can pare down burden about appraisal's fault and provide fair and reliable assessment result through grading that have correct standard and consistency to students.

  • PDF

Dynamic System Identification Using a Recurrent Compensatory Fuzzy Neural Network

  • Lee, Chi-Yung;Lin, Cheng-Jian;Chen, Cheng-Hung;Chang, Chun-Lung
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.5
    • /
    • pp.755-766
    • /
    • 2008
  • This study presents a recurrent compensatory fuzzy neural network (RCFNN) for dynamic system identification. The proposed RCFNN uses a compensatory fuzzy reasoning method, and has feedback connections added to the rule layer of the RCFNN. The compensatory fuzzy reasoning method can make the fuzzy logic system more effective, and the additional feedback connections can solve temporal problems as well. Moreover, an online learning algorithm is demonstrated to automatically construct the RCFNN. The RCFNN initially contains no rules. The rules are created and adapted as online learning proceeds via simultaneous structure and parameter learning. Structure learning is based on the measure of degree and parameter learning is based on the gradient descent algorithm. The simulation results from identifying dynamic systems demonstrate that the convergence speed of the proposed method exceeds that of conventional methods. Moreover, the number of adjustable parameters of the proposed method is less than the other recurrent methods.

Fuzzy Modeling of Activated Sludge Process Using Linear Reasoning Method (하수처리 프로세스의 선형 추론 퍼지 모델링)

  • Oh, Sung-Kwun;Park, Jong-Jin;Lee, Seong-Ju;Hwang, Hee-Soo;Kim, Hyun-Ki;Woo, Kwang-Bang
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.417-420
    • /
    • 1990
  • The conventional quantitative techniques of system analysis are intrinsically unsuited for dealing with humanistic systems. Therefore, the rule based modeling of fuzzy linguistic type has been developed for the analysis of humanistic systems and complex systems and it is very significant for analysis and design of fuzzy logic controller. The activated sludge process is a commonly used method for treating sewage and waste waters. A mathematical tool to build a fuzzy model of the activated sludge process where fuzzy implications and linear reasoning are used is presented in here. A root-mean square error is used as the criterion of the fuzzy model's adequacy to the A.S.P. and the least square method is used for the identification of optimum consequence parameters. A method of modeling of the activated sludge process using its input-output data and simulation results for its application are shown.

  • PDF

Enhancing Red Tides Prediction using Fuzzy Reasoning and Naive Bayes Classifier (나이브베이스 분류자와 퍼지 추론을 이용한 적조 발생 예측의 성능향상)

  • Park, Sun;Lee, Seong-Ro
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.9
    • /
    • pp.1881-1888
    • /
    • 2011
  • Red tide is a natural phenomenon to bloom harmful algal, which fish and shellfish die en masse. Red tide damage with respect to sea farming has been occurred each year. Red tide damage can be minimized by means of prediction of red tide blooms. Red tide prediction using naive bayes classifier can be achieve good prediction results. The result of naive bayes method only determine red tide blooms, whereas the method can not know how increasing of red tide algae density. In this paper, we proposed the red tide blooms prediction method using fuzzy reasoning and naive bayes classifier. The proposed method can enhance the precision of red tide prediction and forecast the increasing density of red tide algae.

Red Tide Blooms Prediction using Fuzzy Reasoning (퍼지 추론을 이용한 적조 발생 예측)

  • Park, Sun;Lee, Seong-Ro
    • The KIPS Transactions:PartB
    • /
    • v.18B no.5
    • /
    • pp.291-294
    • /
    • 2011
  • Red tide is a temporary natural phenomenon to change sea color by harmful algal blooms, which finfish and shellfish die en masse. There have been many studies on red tide due to increasing of harmful algae damage of fisheries in Korea. Particularly, red tide damage can be minimized by means of prediction of red tide blooms. However, the most of red tide research in Korea has been focused only classification of red tide which it is not enough for predicting red tide blooms. In this paper, we proposed the red tide blooms prediction method using fuzzy reasoning.

Stable Path Tracking Control of a Mobile Robot Using a Wavelet Based Fuzzy Neural Network

  • Oh, Joon-Seop;Park, Jin-Bae;Choi, Yoon-Ho
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.4
    • /
    • pp.552-563
    • /
    • 2005
  • In this paper, we propose a wavelet based fuzzy neural network (WFNN) based direct adaptive control scheme for the solution of the tracking problem of mobile robots. To design a controller, we present a WFNN structure that merges the advantages of the neural network, fuzzy model and wavelet transform. The basic idea of our WFNN structure is to realize the process of fuzzy reasoning of the wavelet fuzzy system by the structure of a neural network and to make the parameters of fuzzy reasoning be expressed by the connection weights of a neural network. In our control system, the control signals are directly obtained to minimize the difference between the reference track and the pose of a mobile robot via the gradient descent (GD) method. In addition, an approach that uses adaptive learning rates for training of the WFNN controller is driven via a Lyapunov stability analysis to guarantee fast convergence, that is, learning rates are adaptively determined to rapidly minimize the state errors of a mobile robot. Finally, to evaluate the performance of the proposed direct adaptive control system using the WFNN controller, we compare the control results of the WFNN controller with those of the FNN, the WNN and the WFM controllers.

A Study on an Adaptive Membership Function for Fuzzy Inference System

  • Bang, Eun-Oh;Chae, Myong-Gi;Lee, Snag-Bae;Tack, Han-Ho;Kim, Il
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.532-538
    • /
    • 1998
  • In this paper, a new adaptive fuzzy inference method using neural network based fuzzy reasoning is proposed to make a fuzzy logic control system more adaptive and more effective. In most cases, the design of a fuzzy inference system rely on the method in which an expert or a skilled human operator would operate in that special domain. However, if he has not expert knowledge for any nonlinear environment, it is difficult to control in order to optimize. Thus, using the proposed adaptive structure for the fuzzy reasoning system can controled more adaptive and more effective in nonlinear environment for changing input membership functions and output membership functions. The proposed fuzzy inference algorithm is called adaptive neuro-fuzzy control(ANFC). ANFC can adapt a proper membership function for nonlinear plant, based upon a minimum number of rules and an initial approximate membership function. Nonlinear function approximation and rotary inverted pendulum control system ar employed to demonstrate the viability of the proposed ANFC.

  • PDF

Notes on Conventional Neuro-Fuzzy Learning Algorithms

  • Shi, Yan;Mizumoto, Masaharu
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.391-394
    • /
    • 1998
  • In this paper, we try to analyze two kinds of conventional neuro-fuzzy learning algorithms, which are widely used in recent fuzzy applications for tuning fuzzy rules, and give a summarization of their properties. Some of these properties show that uses of the conventional neuro-fuzzy learning algorithms are sometimes difficult or inconvenient for constructing an optimal fuzzy system model in practical fuzzy applications.

  • PDF