• Title/Summary/Keyword: Fuzzy Pattern Recognition Algorithm

Search Result 78, Processing Time 0.022 seconds

Pattern Recognition Methods for Emotion Recognition with speech signal

  • Park Chang-Hyun;Sim Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.2
    • /
    • pp.150-154
    • /
    • 2006
  • In this paper, we apply several pattern recognition algorithms to emotion recognition system with speech signal and compare the results. Firstly, we need emotional speech databases. Also, speech features for emotion recognition are determined on the database analysis step. Secondly, recognition algorithms are applied to these speech features. The algorithms we try are artificial neural network, Bayesian learning, Principal Component Analysis, LBG algorithm. Thereafter, the performance gap of these methods is presented on the experiment result section.

Design of Face Recognition algorithm Using PCA&LDA combined for Data Pre-Processing and Polynomial-based RBF Neural Networks (PCA와 LDA를 결합한 데이터 전 처리와 다항식 기반 RBFNNs을 이용한 얼굴 인식 알고리즘 설계)

  • Oh, Sung-Kwun;Yoo, Sung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.5
    • /
    • pp.744-752
    • /
    • 2012
  • In this study, the Polynomial-based Radial Basis Function Neural Networks is proposed as an one of the recognition part of overall face recognition system that consists of two parts such as the preprocessing part and recognition part. The design methodology and procedure of the proposed pRBFNNs are presented to obtain the solution to high-dimensional pattern recognition problems. In data preprocessing part, Principal Component Analysis(PCA) which is generally used in face recognition, which is useful to express some classes using reduction, since it is effective to maintain the rate of recognition and to reduce the amount of data at the same time. However, because of there of the whole face image, it can not guarantee the detection rate about the change of viewpoint and whole image. Thus, to compensate for the defects, Linear Discriminant Analysis(LDA) is used to enhance the separation of different classes. In this paper, we combine the PCA&LDA algorithm and design the optimized pRBFNNs for recognition module. The proposed pRBFNNs architecture consists of three functional modules such as the condition part, the conclusion part, and the inference part as fuzzy rules formed in 'If-then' format. In the condition part of fuzzy rules, input space is partitioned with Fuzzy C-Means clustering. In the conclusion part of rules, the connection weight of pRBFNNs is represented as two kinds of polynomials such as constant, and linear. The coefficients of connection weight identified with back-propagation using gradient descent method. The output of the pRBFNNs model is obtained by fuzzy inference method in the inference part of fuzzy rules. The essential design parameters (including learning rate, momentum coefficient and fuzzification coefficient) of the networks are optimized by means of Differential Evolution. The proposed pRBFNNs are applied to face image(ex Yale, AT&T) datasets and then demonstrated from the viewpoint of the output performance and recognition rate.

A Design on Face Recognition System Based on pRBFNNs by Obtaining Real Time Image (실시간 이미지 획득을 통한 pRBFNNs 기반 얼굴인식 시스템 설계)

  • Oh, Sung-Kwun;Seok, Jin-Wook;Kim, Ki-Sang;Kim, Hyun-Ki
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.12
    • /
    • pp.1150-1158
    • /
    • 2010
  • In this study, the Polynomial-based Radial Basis Function Neural Networks is proposed as one of the recognition part of overall face recognition system that consists of two parts such as the preprocessing part and recognition part. The design methodology and procedure of the proposed pRBFNNs are presented to obtain the solution to high-dimensional pattern recognition problem. First, in preprocessing part, we use a CCD camera to obtain a picture frame in real-time. By using histogram equalization method, we can partially enhance the distorted image influenced by natural as well as artificial illumination. We use an AdaBoost algorithm proposed by Viola and Jones, which is exploited for the detection of facial image area between face and non-facial image area. As the feature extraction algorithm, PCA method is used. In this study, the PCA method, which is a feature extraction algorithm, is used to carry out the dimension reduction of facial image area formed by high-dimensional information. Secondly, we use pRBFNNs to identify the ID by recognizing unique pattern of each person. The proposed pRBFNNs architecture consists of three functional modules such as the condition part, the conclusion part, and the inference part as fuzzy rules formed in 'If-then' format. In the condition part of fuzzy rules, input space is partitioned with Fuzzy C-Means clustering. In the conclusion part of rules, the connection weight of pRBFNNs is represented as three kinds of polynomials such as constant, linear, and quadratic. Coefficients of connection weight identified with back-propagation using gradient descent method. The output of pRBFNNs model is obtained by fuzzy inference method in the inference part of fuzzy rules. The essential design parameters (including learning rate, momentum coefficient and fuzzification coefficient) of the networks are optimized by means of the Particle Swarm Optimization. The proposed pRBFNNs are applied to real-time face recognition system and then demonstrated from the viewpoint of output performance and recognition rate.

Laser Weld Quality Monitoring System

  • Park, H.;Park, Y.;S. Rhee
    • International Journal of Korean Welding Society
    • /
    • v.1 no.1
    • /
    • pp.7-12
    • /
    • 2001
  • Real time monitoring has become critical as the use of laser welding increases. Plasma and spatter are measured and used as the signal for estimating weld quality. The estimating algorithm was made using the fuzzy pattern recognition with the area of data that is beyond the tolerance boundary. Also, an algorithm that detects the spatter and the localized defect was created in order to kd the partially produced pit and the sudden loss of weld penetration. These algorithms were used in quality monitoring of the $CO_2$ laser tailored blank weld. Statistical program that can display the laser weld quality result and the signal transition was made for the first stage of the remote control system.

  • PDF

Image Recognition by Learning Multi-Valued Logic Neural Network

  • Kim, Doo-Ywan;Chung, Hwan-Mook
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.3
    • /
    • pp.215-220
    • /
    • 2002
  • This paper proposes a method to apply the Backpropagation(BP) algorithm of MVL(Multi-Valued Logic) Neural Network to pattern recognition. It extracts the property of an object density about an original pattern necessary for pattern processing and makes the property of the object density mapped to MVL. In addition, because it team the pattern by using multiple valued logic, it can reduce time f3r pattern and space fer memory to a minimum. There is, however, a demerit that existed MVL cannot adapt the change of circumstance. Through changing input into MVL function, not direct input of an existed Multiple pattern, and making it each variable loam by neural network after calculating each variable into liter function. Error has been reduced and convergence speed has become fast.

A Study on Korean, English and Japanese Speaker Recognitions Using the Peak and Valley Pitch Detection and the Fuzzy Theory (PVPF방법과 퍼지 이론을 이용한 한국어, 영어 및 일본어 화자 인식에 관한 연구)

  • Kim, Yeon-Suk
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.2
    • /
    • pp.522-533
    • /
    • 1999
  • This paper proposes speaker recognition algorithm which includes both the pitch parameter and the fuzzy inference. This study proposes a pitch detection method PVPF(peak and valley pitch detection fuction) by means of comparing spectra which utilizes the transform characteristics between time and frequency. In this paper, makes reference pattern using membership function and performs vocal tract recognition of common character using fuzzy pattern matching in order to include time variation width for non-linear utterance time.

  • PDF

A Study on Korean and English Speaker Recognitions using the Fuzzy Theory (퍼지 이론을 이용한 한국어 및 영어 화자 인식에 관한 연구)

  • 김연숙;김희주;김경재
    • Journal of the Korea Society of Computer and Information
    • /
    • v.7 no.3
    • /
    • pp.49-55
    • /
    • 2002
  • This paper proposes speaker recognition algorithm which includes both the pitch parameter and the fuzzy. This study proposes a pitch detection method for the peak and valley pitch detection function by means of comparing spectra which utilizes the transform characteristics between time and frequency. It measures the similarity to the original spectrum while arbitrarily varying the period in the time domain. It heavily weights the error due to the changing characteristics of the phonemes, while it is strong against noise. In this paper, makes reference pattern using membership function and performs vocal track recognition of common character using fuzzy pattern matching in odor to include time variation width for non-linear utterance time.

  • PDF

A Study on Korean and Japanese Speaker Recognitions using the Fuzzy Theory (퍼지 이론을 이용한 한국어 및 일어 화자 인식에 관한 연구)

  • 김연숙;김창완
    • Journal of the Korea Society of Computer and Information
    • /
    • v.5 no.3
    • /
    • pp.51-57
    • /
    • 2000
  • This paper proposes speaker recognition algorithm which includes both the pitch and the fuzzy. This study proposes a pitch detection method for the peak and valley pitch detection function by means of comparing spectra which utilizes the transform characteristics between time and frequency. It measures the similarity to the original spectrum while arbitrarily varying the period in the time domain. It heavily weights the error due to the changing characteristics of the phonemes, while it is strong against noise. In this paper, makes reference pattern using membership function and performs vocal track recognition of common character using fuzzy pattern matching in order to include time variation width for non-linear utterance time.

  • PDF

An Interval Type-2 Fuzzy PCM Algorithm for Pattern Recognition (패턴인식을 위한 Interval Type-2 퍼지 PCM 알고리즘)

  • Min, Ji-Hee;Rhee, Frank Chung-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.1
    • /
    • pp.102-107
    • /
    • 2009
  • The Possibilistic C-means(PCM) was proposed to overcome some of the drawbacks associated with the Fuzzy C-means(FCM) such as improved performance for noise data. However, PCM possesses some drawbacks such as sensitivity in initial parameter values and to patterns that have relatively short distances between the prototypes. To overcome these drawbacks, we propose an interval type 2 fuzzy approach to PCM by considering uncertainty in the fuzzy parameter m in the PCM algorithm.

Extraction of Facial Region Using Fuzzy Color Filter (퍼지 색상 필터를 이용한 얼굴 영역 추출)

  • Kim, M.H.;Park, J.B.;Jung, K.H.;Joo, Y.H.;Lee, J.;Cho, Y.J.
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.147-149
    • /
    • 2004
  • There are no authentic solutions in a face region extraction problem though it is an important part of pattern recognition and has diverse application fields. It is not easy to develop the facial region extraction algorithm because the facial image is very sensitive according to age, sex, and illumination. In this paper, to solve these difficulties, a fuzzy color filer based on the facial region extraction algorithm is proposed. The fuzzy color filter makes the robust facial region extraction enable by modeling the skin color. Especially, it is robust in facial region extraction with various illuminations. In addition, to identify the fuzzy color filter, a linear matrix inequality(LMI) optimization method is used. Finally, the simulation result is given to confirm the superiority of the proposed algorithm.

  • PDF