• 제목/요약/키워드: Fuzzy Pattern Recognition

검색결과 194건 처리시간 0.03초

A Study on Korean, English and Japanese Speaker Recognitions Using the Peak and Valley Pitch Detection and the Fuzzy Theory (PVPF방법과 퍼지 이론을 이용한 한국어, 영어 및 일본어 화자 인식에 관한 연구)

  • Kim, Yeon-Suk
    • The Transactions of the Korea Information Processing Society
    • /
    • 제6권2호
    • /
    • pp.522-533
    • /
    • 1999
  • This paper proposes speaker recognition algorithm which includes both the pitch parameter and the fuzzy inference. This study proposes a pitch detection method PVPF(peak and valley pitch detection fuction) by means of comparing spectra which utilizes the transform characteristics between time and frequency. In this paper, makes reference pattern using membership function and performs vocal tract recognition of common character using fuzzy pattern matching in order to include time variation width for non-linear utterance time.

  • PDF

A Study on Korean and English Speaker Recognitions using the Fuzzy Theory (퍼지 이론을 이용한 한국어 및 영어 화자 인식에 관한 연구)

  • 김연숙;김희주;김경재
    • Journal of the Korea Society of Computer and Information
    • /
    • 제7권3호
    • /
    • pp.49-55
    • /
    • 2002
  • This paper proposes speaker recognition algorithm which includes both the pitch parameter and the fuzzy. This study proposes a pitch detection method for the peak and valley pitch detection function by means of comparing spectra which utilizes the transform characteristics between time and frequency. It measures the similarity to the original spectrum while arbitrarily varying the period in the time domain. It heavily weights the error due to the changing characteristics of the phonemes, while it is strong against noise. In this paper, makes reference pattern using membership function and performs vocal track recognition of common character using fuzzy pattern matching in odor to include time variation width for non-linear utterance time.

  • PDF

A Study on Korean and Japanese Speaker Recognitions using the Fuzzy Theory (퍼지 이론을 이용한 한국어 및 일어 화자 인식에 관한 연구)

  • 김연숙;김창완
    • Journal of the Korea Society of Computer and Information
    • /
    • 제5권3호
    • /
    • pp.51-57
    • /
    • 2000
  • This paper proposes speaker recognition algorithm which includes both the pitch and the fuzzy. This study proposes a pitch detection method for the peak and valley pitch detection function by means of comparing spectra which utilizes the transform characteristics between time and frequency. It measures the similarity to the original spectrum while arbitrarily varying the period in the time domain. It heavily weights the error due to the changing characteristics of the phonemes, while it is strong against noise. In this paper, makes reference pattern using membership function and performs vocal track recognition of common character using fuzzy pattern matching in order to include time variation width for non-linear utterance time.

  • PDF

Pattern Classification of the Strength of Concrete by Feature Parameters and Evidence Accumulation of Ultrasonic Signal (초음파신호의 특징 파라메터 및 증거축적 방법을 이용한 콘크리트 강도 분류)

  • Kim, Se-Dong;Sin, Dong-Hwan;Lee, Yeong-Seok;Kim, Seong-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • 제48권10호
    • /
    • pp.1335-1343
    • /
    • 1999
  • This paper presents concrete pattern recognition method to identify the strength of concrete by evidence accumulation with multiple parameters based on artificial intelligence techniques. At first, zero-crossing(ZCR), mean frequency(MEANF), median frequency(MEDF) and autoregressive model coefficient(ARC) are extracted as feature parameters from ultrasonic signal of concrete. Pattern recognition is carried out through the evidence accumulation procedure using distance measured with reference parameters. A fuzzy mapping function is designed to transform the distances for the application of the evidence accumulation method. Results are presented to support the feasibility of the suggested approach for concrete pattern recognition.

  • PDF

A New Class of Similarity Measures for Fuzzy Sets

  • Omran Saleh;Hassaballah M.
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제6권2호
    • /
    • pp.100-104
    • /
    • 2006
  • Fuzzy techniques can be applied in many domains of computer vision community. The definition of an adequate similarity measure for measuring the similarity between fuzzy sets is of great importance in the field of image processing, image retrieval and pattern recognition. This paper proposes a new class of the similarity measures. The properties, sensitivity and effectiveness of the proposed measures are investigated and tested on real data. Experimental results show that these similarity measures can provide a useful way for measuring the similarity between fuzzy sets.

Pattern Recognition with Rotation Invariant Multiresolution Features

  • Rodtook, S.;Makhanov, S.S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1057-1060
    • /
    • 2004
  • We propose new rotation moment invariants based on multiresolution filter bank techniques. The multiresolution pyramid motivates our simple but efficient feature selection procedure based on the fuzzy C-mean clustering, combined with the Mahalanobis distance. The procedure verifies an impact of random noise as well as an interesting and less known impact of noise due to spatial transformations. The recognition accuracy of the proposed techniques has been tested with the preceding moment invariants as well as with some wavelet based schemes. The numerical experiments, with more than 30,000 images, demonstrate a tangible accuracy increase of about 3% for low noise, 8% for the average noise and 15% for high level noise.

  • PDF

An Elliptic Approach to Fuzzy Pattern Recognition

  • Karbou, Fatiha;Karbou, Fatima;Karbou, M.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
    • /
    • pp.272-277
    • /
    • 1998
  • If we want to compare the form of two objects, the human vision takes into account the parameter's width/length/height at the same time. however, the machine needs to compare width then lengths and finally height. In each comparison the machine considers only one character. The goal of this paper is to imitate the human manner of comparison and recognition by using two or three characters instead of one during the comparison. The ellipse is a first approach of comparison because it provides us a general and a simple relation that can link two parameters that are the half axis of the ellipse. Indeed, we assimilate each character to a half axis of the ellipse and the result is a geometrical figure that varies according to values of the two characters.

  • PDF

Enhanced Fuzzy Single Layer Perceptron

  • Chae, Gyoo-Yong;Eom, Sang-Hee;Kim, Kwang-Baek
    • Journal of information and communication convergence engineering
    • /
    • 제2권1호
    • /
    • pp.36-39
    • /
    • 2004
  • In this paper, a method of improving the learning speed and convergence rate is proposed to exploit the advantages of artificial neural networks and neuro-fuzzy systems. This method is applied to the XOR problem, n bit parity problem, which is used as the benchmark in the field of pattern recognition. The method is also applied to the recognition of digital image for practical image application. As a result of experiment, it does not always guarantee convergence. However, the network showed considerable improvement in learning time and has a high convergence rate. The proposed network can be extended to any number of layers. When we consider only the case of the single layer, the networks had the capability of high speed during the learning process and rapid processing on huge images.

Ultrasonic Sensor System using Neuro-Fuzzy Algorithm for Improvement of Pattern Recognition Rate (초음파센서 뉴로퍼지 시스템을 이용한 패턴인식률 개선)

  • Na, Cheolhun;Choi, Kwangseok;Boo, Suil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 한국정보통신학회 2014년도 추계학술대회
    • /
    • pp.721-724
    • /
    • 2014
  • Ultrasonic sensor is used widely for many applications because low cost, simple structure, and low restriction. There are many difficulties to recognize an object by use an ultrasonic sensor, because of low resolution, poor direction, and measurement error. To improve the these problem, we use the various kinds of sensor arrangement methods, large amount of sensor, and change the arrangement pattern of sensor. In this paper, to obtain the most basic parameters for pattern recognition such as distance, dimension of the object, an angle of the object, we get the improved results by use the intelligent calculation algorithm based on Neuro-Fuzzy. This method use the multifarious output voltage of ultrasonic sensor by simple electronic circuit.

  • PDF

A New Fuzzy Supervised Learning Algorithm

  • Kim, Kwang-Baek;Yuk, Chang-Keun;Cha, Eui-Young
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
    • /
    • pp.399-403
    • /
    • 1998
  • In this paper, we proposed a new fuzzy supervised learning algorithm. We construct, and train, a new type fuzzy neural net to model the linear activation function. Properties of our fuzzy neural net include : (1) a proposed linear activation function ; and (2) a modified delta rule for learning algorithm. We applied this proposed learning algorithm to exclusive OR,3 bit parity using benchmark in neural network and pattern recognition problems, a kind of image recognition.

  • PDF