International Journal of Fuzzy Logic and Intelligent Systems, vol. 6, no. 2, June 2006 pp. 100—-104

A New Class of Similarity Measures for Fuzzy Sets

Saleh Omran and M. Hassaballah

Mathematics Department, Faculty of Science, South Valley University, Qena, Egypt.

Abstract

Fuzzy techniques can be applied in many domains of computer vision community. The definition of an adequate similarity measure for

measuring the similarity between fuzzy sets is of great importance in the field of image processing, image retrieval and pattern recognition.

This paper proposes a new class of the similarity measures. The properties, sensitivity and effectiveness of the proposed measures are

investigated and tested on real data. Experimental results show that these similarity measures can provide a useful way for measuring the

similarity between fuzzy sets.
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1. Introduction

Measuring the similarity between objects plays an important
role in many fields of computer science, such as image
processing, image retrieval, image compression, pattern
Objective
comparison are required to test the performance of applying

recognition, etc. measures or measures of
algorithms to an image, to compare the output image. Visual
tasks are often based on the evaluation of similarities between
image-objects represented in an appropriate feature space. The
performance of content-based query systems depends on the
definition of a suitable similarity measure [1].

Several measures have been proposed to measure the
similarity between fuzzy sets or images [2-7]. There is no
generic method for selecting a suitable similarity measure or a
distance measure. However, a prior information and statistics
of features can be used in selection or to establish a new
measure. Van der Weken et al. [8] géve an overview of
similarity measures, originally introduced to express the degree
of comparison between fuzzy sets, which can be applied to
images. These similarity measures are all pixel-based, and have
therefore not always satisfactory results. To cope with this
drawback, in [9] they proposed similarity measures based on
neighbourhoods, so that the relevant structures of the images
are observed better. In this way 13 similarity measures were
found to be appropri~te for the comparison of images.

Another type of similarity measures between intuitionistic
fuzzy sets (IFSs) was proposed by Weiqiong Wang et al [10],
some distance measures and the corresponding proofs are given,
and the relations between similarity measure and distance
measure of IFSs are analyzed. Measuring the degree of
similarity between three fuzzy sets under unifying form and
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between IFSs is presented in [11]. The authors reviewed some
existing similarity measure, showed that these measures are not
always effective in some cases and illustrated the problem in
the context of colorectal cancer diagnosis by similarity measure
between fuzzy rough sets.

The rest of this paper is organized as follows: Section 2
presents the mathematical foundations of fuzzy sets and digital
images. Sections 3 describes the proposed similarity measures
and investigating its properties. Experimental results on real
data are outlined in section 4, and finally, the conclusions are
given in section 5.

2. Mathematical foundations of fuzzy sets

2.1 Fuzzy sets and digital images )

The theory of fuzzy sets F(X) was proposed by Zadeh [12].
A fuzzy set A in a universe X={x,,x,,...x,} is characterized by
a mapping y,:X —[0,1], which associates with every
element x in X a degree of membership y,(x) of x in the
fuzzy set A. In the following, let a= {g.a,,..a,} and
b=1{b,,b,,..b,} be the vector representation of the fuzzy sets A
and B respectively, where a. and b, are membership values
Xa(x;) and  gy(x;) with respect to x, and x,
(i,j =0,1,2...n) respectively. Furthermore, suppose F(X) be
the class of all fuzzy sets of X, A4° € F(X ) is the complement
of AeF(X). :

In order to model the intersection or union between two
fuzzy sets the A and v operators will be used to refer to
the minimum and maximum respectively. The cardinality of a
finite crisp set is given by the number of elements in that set.
This concept can be extend to fuzzy sets: the sigma count of a
fuzzy set A (with finite support) in a universe X is defined as



| A41= 2" 74(x)

xeX

A digital image can be identified with a fuzzy set that takes
values on the grid points (x,y), with xyeN, 0<x<Mand
0<y <N, (M,N e N). Consequently, for two digital images
A and B, one have that AB € F(X), with
X ={(x,y)I0<x <M 0<y <N}
{n =1,2,.MN} of image points.

a discrete set

2.2 Similarity measures

There is no unique definition for the similarity measure, but
the most common used definition is the following.
Definition 2.1. A similarity measure is a function assigning a
similarity value to the pair of fuzzy sets (A,B) that indicates the
degree to which A and B are equal or how similar they are.
This function must be reflexive, symmetric and min-transitive.
On other word, A mapping S :F (X )x F(X ) — [0,1] is
said to be a similarity measure between fuzzy sets
AeF(X)and B eF(X), if 5(4,B)satisfies the following
properties:

(SP1) S(4,B)=S(B,4), A,BeF(X);
(SP2) S(D,D°)=0, if D is a crisp set ;
(SP3) S(E’E):Aﬁm?i‘X,S(A’B)’ for all Ee€F(X);

(SP4) If AcB cC for all 4,B,C € F(X)
then S(4,B)>S(4.C) and S(B,C)>S(4,C).

Based on this definition several similarity measures have
been proposed . The first similarity measure is based on the
fuzzy Minkowski distance d,, and the observation that the
smaller the distance between A, B, the greater the similarity
between A, B. This observation leads to the following
similarity measure S, (A,B):

1 n %
S,(A,B):l—[—2|a,—b,|’} , r2l (1)
n i

There are other similarity measures which are also based on
a distance such as .S, (A,B)and S, (A,B)

o -b|
Sy(4,B)=1-" | @)
> (a,+b)
8,(4,B)=1-d (a,b)=1-max(|a, -b|) (3)

Another type of similarity measures are based on the set-
theoretic. These measures are based on the sigma count and the
intersection or union of two fuzzy sets:

i(a, Ab)
2 @
$avb)

|4nB| _
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These set-theoretic similarity measures are the most suitable
for measuring similarity between overlapping fuzzy sets.
Matching function-based similarity measures are also existed
such as:

i(ai bl)

S,(4,8)= ! )

n i
max(z a, Zb,zj
i=l i=l

The larger the value of the above all similarity measures, the

more the similarity between the fuzzy sets A and B. These
similarity measures are mentioned in detail in [2,9].
The classical measures for images comparison are the mean

square error (MSE),

MSE(4,B)=+ ¥ | d(x.y)- B(x. )] (8)

N (x,v)ex

and the peak-signal-to-noise-ratio (PSNR)

PSNR(A4,B) = 2010g10[

__ 255 (9)
,/MSR(A,B)

All these similarity measure and the classical measures for
images comparison (MSR, PSNR) will be compared with the
proposed similarity measure using real data.

3. The proposed similarity measures

Definition 3.1. For A,B € F(X), we define
2"ab
aa+bb+(2" -2)ab

Z’ial b,
— i=1
iaf +ibﬁ +(2 —2)Zn:a,.b,
i=1 i=l i=1

S™(4,B) =

Definition 3.2. . For A,B € F(X), we define

—=r 27 a.
§'(4.8)= ab
aa+bb+(27" -2)ab
27 ah , rz0 (1)
_ i=l
D@+ b+ -2 ab,
i=l i=i i=l
We call S7(4,B) and §r(A,B) similarity measures

between fuzzy sets A and B. These two classes of similarity
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measures can be considered as a general form of the similarity
measure introduced in [2] by putting »=0. Their properties will
be investigated under the definition 2.1. The following three
femmas will be needed to do this.

Lemma 3.1. Let p,q< [0,1] and p 2¢ . Then—2— >4
l+p l+¢
2p

i+p

Lemma 3.2. Let 0<p<l  Then 0< <1.

q

L, 9

Lemma 3.3. Let p,g<[0,1]and p>g.Then 2-p 2-g

In the following the properties of S"(4,B) under the

definition 2.1 will be investigated and the same thing can be
done for Sr(A,B) with using lemma 3.3.

SP1. A,B € F(X), one have S'(4,B)=S"(B,A4)
The proof'is obvious.
SP2. §°(D,D)=0,if Dis a scrip set
The proof is obvious.
SP3. S(E.E)= ,max S°(4,B) ,forall EeF(X)
The proof'is obvious.

SP4. If AcBcC forall 4,B,CeF(X)

then S7(4,B)=S8"(4,C) and S"(B,C)=S8"(4,C).
Proof. Mathematical induction will be used to check the proof
of this proposition
(i) Forr=20

n

Za,..b,
S°(4,B)=— it

>ai+ ib,z - ia,.b,
i=1 i=) i=l

which is the same S,(4, B) introduced in [2] and the proof of

this case is given in details in [2].
(ii) For r = k, we suppose the relation is correct i.e.
If AcBcC forall 4,B,Ce F(X)
then S*(4,B)>S*(4,C) and S*(B,C)= S5*(4,C).
(iii) We will try to prove that the relation is true at » = k+1
using case (ii) v
i.e. If AcBcC forall 4,B,C<c F(X)
Then S*'(4,B)>S8*"(4,C) and S*'(B,C)=8*(4,C).

2k+lia, b,
SkH(A’B) = n n = n
DG +Y b2 =) Y ab,
i=1 i=l i=]
2¢ Z”:a,.b,
2 i=1
2 Ty(2F -2 b
D e ) BT TN
B 1+ 5%(4,B)
2f y) ’
;al i

+
DA +Y 5+ -2 ab
i=1 i=l i=l

1
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Using lemma 3.1 and case (ii) $*(4,B)> S*(4,C), we have

2 55(4,B) 2 S44,0)

> =5 (4,C
1+8%(4,B) 1+8%(4,C) (4.

SkH(A, B) —

ie. S¥'(4,B)=S""(4,C) forall A4,B,Ce F(X)

In the same way one can easily prove that
SYN(B,CY2 8%(4,C) forall A4,B,CeF(X).
Therefore, If Ac B C forall 4,B,Ce F(X)
then S7(4,B)>S5"(4,C) and S"(B,C)=S5"(4,C).

There are some other similarity properties which should be
investigate such as:
SP5. For A,Be F(X) one should have S"(4,B)=1 if A=B.
The proof is obvious
SP6. For A4,Be F(X) oneshould have 0<S"(4,B)<1.
Proof. The proof of this case can be done using mathematical
induction as follows:
(a) For r =0, we have S°(4,B)=S,(4, B) and the proof of this
case founded in [2].
ie. 0<S°(4,B)=S,(4,B)<1,for 4,BeF(X).
(b) For r = k, we suppose the relation is correct
ie. 0<8%(4,B)<I,for A,BeF(X) .
(c) We will try to prove that the relation is true at » = k+1 using
case (b)
ie.  0<8"(4,B)<l,for A,Be F(X)
From proof of SP4 we have
2 8%(4,B)

S*1(4,B) =
(4.5) 1+ S%(4,B)

Using lemma 2.2 and case (b)
0<SA,B)<1,for A,Be F(X),we have
k

2 8(4,B) <1

0< 84, By =222 o
(4.8) 1+5*(4,B)

Therefore, 0<S"(4,B)<1,for A4,Be F(X).

4. Experimental results

The performance of the new similarity measures in
comparison with the mentioned similarity measures and with
the classical measures for images comparison, the mean square
error (MSE), and the peak-signal-to-noise-ratio (PSNR) will be
illustrated in this section. In order to do this, two experiments
are carried out.

In the first experiment three different percentages (4%,10%,
33%) of gaussian noise are added to the original image used in
the test. The original image (Lena) and the noisy images with
different percentages are shown in Fig.1. The results of this
experiment are shown in Table 1. This experiment show how
the proposed similarity measures react to gaussian noise in



comparison with other similarity measures. From the results of
table (1) one can note that the proposed similarity measures
don’t affect too much due to noise because the noisy image is
coming from the original image and it has to be similar to the
original one. Also, the value of proposed similarity measures
decreases with respect to an increasing noise percentage.

(¢)10% noise (d) 33% noise
Fig. 1. Lena image with different percentages(4%,10%, 33%)
of gaussian noise.

Table 1. Performance of measures applied to two images (A is
original, and B is with three different percentages (4%,10%,
33%) of gaussian noise).

4% 10% 33%
S, (A.B) 0.98329 0.96063 0.83420
S, (A,B) 0.98622 0.96724 0.81340
S, (A,B) 0.94510 0.87451 0.60784
S, (A,B) 0.97285 0.93659 0.82379
S,(A,B) 0.96697 0.92437 0.79686
S, (A,B) 0.98624 0.96766 0.81398
S, (A.B) 0.99902 0.99524 0.90359
5°(A,B) 0.99900 0.99102 0.83214
5" (A,B) 0.99950 0.99334 0.84032
S’ (A,B) 0.99801 0.98822 0.85947
MSE(A,B) 10.16 100.77 871.64

PSNR(A,B) 35.54 28.12 18.73

The second experiment has been performed to test the
sensitivity of the proposed measures in comparison with the
other mentioned measures using images with different types of
distortions. In this case ‘peppers’ image is used, a variety of
corruption is add: JPEG-compression, enlightening, blur, and
other different types of images (San Francisco, hill). The

A New Class of Similarity Measures for Fuzzy Sets

original and distorted images are shown in Fig. 2. In Table 2
the value of all measures are calculated with respect to the
prototype image (a) which is the leftmost one in Fig. 2. Based
on the Sgand (S;, S;), one can make an incorrect conclusion
that images (a) and (e), (a) and (f) (Fig.2) have the same
similarity respectively, while the proposed similarity measures
show larger difference between these images. According to the
results of table 2, it is easy to note that the performance of MSE
is extremely poor in the sense that images are nearly identical.
On the other hand the proposed measures show better
sensitivity in comparison of similar images and better
separation between different images, with S is more sensitive

to noise and dissimilarity than S".

(d (e) U]
Fig. 2. (a) The original ‘pepers’ image, (b) JPEG-compression,
(c) enlightened, (d) blurred, (¢) san. image, () hill image.

Table 2. Performance of measures applied to ‘peppers’ image
with a variety of corruption and other different images.

(a) vs. (b) [ (a) vs. (c) [ (a) vs. (d) | (a) vs. () | (a) vs. ()
S, (AB) | 0.93120 | 0.99023 | 0.97113 | 0.72359 | 0.91214
S, (A,B) | 0.94981 | 0.96502 | 0.96789 | 0.66685 | 0.76309
S;(AB)| 0.81176 | 0.89974 | 0.90112 [ 0.21176 | 0.63529
S, (A,B) | 091221 | 0.90565 | 0.96634 | 0.50011 | 0.61685
S; (A,B) | 0.89930 | 0.93881 | 0.97126 | 0.55550 | 0.62628
S, (A,B) ] 0.92321 | 0.98302 | 0.98330 | 0.93738 | 0.78754
S, (A,B)| 0.96034 | 0.97661 | 0.97354 | 0.46604 | 0.94007
S°(A,B) | 092232 | 0.97893 | 0.96780 | 0.56245 | 0.61203
S"(A,B) | 093372 | 0.96972 | 0.97560 | 0.55332 | 0.73215
s (A,B) | 0.90865 | 0.93991 [ 0.95214 | 0.20012 | 0.38924

MSE(A,B)| 128.22 103.25 120.23 | 2968.2 1062.6

Finally, only a qualitative evaluation of the proposed
similarity measures performance is made in the present work,
because there are no formal criteria to compare various
similarity measures and to define a universal measure
(application independent). The only disadvantage of the
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proposed similarity measures is that like all the other measures
the proposed similarity measures have the localization of their
usage, i.e. they may provide a useful way to measure the
similarity in some cases. Hence it is very hard to say that the
proposed measures are the best in all cases.

5. Conclusions

Measuring the similarity between fuzzy sets plays a vital role
in several fields. Constantly looking for a better similarity
measure method is a pursuing of fuzzy mathematicians,
however, none of all well-known similarity measure methods is
all-powerful, and all have the localization of its usage. In the
present paper we proposed a new class of similarity measures
and examined its properties. The proposed class of similarity
measure was compared with other similarity measures using
real data. Because of it have some good properties, it can be
concluded that the proposed generalized similarity measure
could improve distinguish precision and enhance the capability
of classification of some similar sets, therefore, it can provide a
useful way to measure the similarity between fuzzy sets.
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