• 제목/요약/키워드: Fuzzy Pattern Matching

검색결과 39건 처리시간 0.027초

TOLERANT FUZZY PATTERN MATCHING : AN INTRODUCTION

  • DUBOIS, DIDIER;PRADE, HENRI
    • 한국지능시스템학회논문지
    • /
    • 제3권2호
    • /
    • pp.3-17
    • /
    • 1993
  • The fuzzy pattern matching technique has been developed in the framework of fuzzy set and possibility theory in order to take into account the imprecision and the uncertainty pervading values which have to be compared to requirements (which may be fuzzy) in a pattern matching process. This paper restates the basic principles and extends them to situations where (sub)patterns are only required to be satisfied up to a given tolerance (which may be fuzzy), or where the different subparts of a compound pattern may have various levels of importance. Both cases correspond to a weakening of elementary patterns. which can be expressed by a fuzzy relations modelling an approximate equality or an uncertain strict equality respectively. We also study the more sophisticated case where some elementary patterns have not to be satisfied with the highest priority provided that weaker requirements remain satisfied. The fuzzy pattern matching technique applies in a variety of problems including the evaluation of soft queries with respect to a fuzzy database, the evaluation of the fuzzy condition parts of rules in approximate reasoning, or the evaluation of the belonging of an ill-known object to a flexible class in classification problems.

  • PDF

뉴럴-퍼지패턴매칭에 의한 단어인식에 관한 연구 (A Study on Word Recognition Using Neural-Fuzzy Pattern Matching)

  • 이기영;최갑석
    • 전자공학회논문지B
    • /
    • 제29B권11호
    • /
    • pp.130-137
    • /
    • 1992
  • This paper presents the word recognition method using a neural-fuzzy pattern matching, in order to make a proper speech pattern for a spectrum sequence and to improve a recognition rate. In this method, a frequency variation is reduced by generating binary spectrum patterns through associative memory using a neural network, and a time variation is decreased by measuring the simillarity using a fuzzy pattern matching. For this method using binary spectrum patterns and logic algebraic operations to measure the simillarity, memory capacity and computation requirements are far less than those of DTW using a conventional distortion measure. To show the validity of the recognition performance for this method, word recognition experiments are carried out using 28 DDD city names and compared with DTW and a fuzzy pattern matching. The results show that our presented method is more excellent in the recognition performance than the other methods.

  • PDF

FAULT DIAGNOSIS OF ROTATING MACHINERY THROUGH FUZZY PATTERN MATCHING

  • Fernandez salido, Jesus Manuel;Murakami, Shuta
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
    • /
    • pp.203-207
    • /
    • 1998
  • In this paper, it is shown how Fuzzy Pattern Matching can be applied to diagnosis of the most common faults of Rotating Machinery. The whole diagnosis process has been divided in three steps : Fault Detection, Fault Isolation and Fault Identification, whose possible results are described by linguistic patterns. Diagnosis will consist in obtaining a set of matching indexes that indexes that express the compatibility of the fuzzified features extracted from the measured vibration signals, with the knowledge contained in the corresponding patterns.

  • PDF

공작기계 지능화를 위한 다중 감시 시스템의 개발-드릴가공에의 적용- (Development of a Multiple Monitioring System for Intelligence of a Machine Tool -Application to Drilling Process-)

  • 김화영;안중환
    • 한국정밀공학회지
    • /
    • 제10권4호
    • /
    • pp.142-151
    • /
    • 1993
  • An intelligent mulitiple monitoring system to monitor tool/machining states synthetically was proposed and developed. It consists of 2 fundamental subsystems : the multiple sensor detection unit and the intellignet integrated diagnosis unit. Three signals, that is, spindle motor current, Z-axis motor current, and machining sound were adopted to detect tool/machining states more reliably. Based on the multiple sensor information, the diagnosis unit judges either tool breakage or degree of tool wear state using fuzzy reasoning. Tool breakage is diagnosed by the level of spindle/z-axis motor current. Tool wear is diagnosed by both the result of fuzzy pattern recognition for motor currents and the result of pattern matching for machining sound. Fuzzy c-means algorithm was used for fuzzy pattern recognition. Experiments carried out for drill operation in the machining center have shown that the developed system monitors abnormal drill/states drilling very reliably.

  • PDF

FUZZY LOGIC KNOWLEDGE SYSTEMS AND ARTIFICIAL NEURAL NETWORKS IN MEDICINE AND BIOLOGY

  • Sanchez, Elie
    • 한국지능시스템학회논문지
    • /
    • 제1권1호
    • /
    • pp.9-25
    • /
    • 1991
  • This tutorial paper has been written for biologists, physicians or beginners in fuzzy sets theory and applications. This field is introduced in the framework of medical diagnosis problems. The paper describes and illustrates with practical examples, a general methodology of special interest in the processing of borderline cases, that allows a graded assignment of diagnoses to patients. A pattern of medical knowledge consists of a tableau with linguistic entries or of fuzzy propositions. Relationships between symptoms and diagnoses are interpreted as labels of fuzzy sets. It is shown how possibility measures (soft matching) can be used and combined to derive diagnoses after measurements on collected data. The concepts and methods are illustrated in a biomedical application on inflammatory protein variations. In the case of poor diagnostic classifications, it is introduced appropriate ponderations, acting on the characterizations of proteins, in order to decrease their relative influence. As a consequence, when pattern matching is achieved, the final ranking of inflammatory syndromes assigned to a given patient might change to better fit the actual classification. Defuzzification of results (i.e. diagnostic groups assigned to patients) is performed as a non fuzzy sets partition issued from a "separating power", and not as the center of gravity method commonly employed in fuzzy control. It is then introduced a model of fuzzy connectionist expert system, in which an artificial neural network is designed to build the knowledge base of an expert system, from training examples (this model can also be used for specifications of rules in fuzzy logic control). Two types of weights are associated with the connections: primary linguistic weights, interpreted as labels of fuzzy sets, and secondary numerical weights. Cell activation is computed through MIN-MAX fuzzy equations of the weights. Learning consists in finding the (numerical) weights and the network topology. This feed forward network is described and illustrated in the same biomedical domain as in the first part.

  • PDF

퍼지 클러스터링과 스트링 매칭을 통합한 형상 인식법 (Pattern Recognition Method Using Fuzzy Clustering and String Matching)

  • 남원우;이상조
    • 대한기계학회논문집
    • /
    • 제17권11호
    • /
    • pp.2711-2722
    • /
    • 1993
  • Most of the current 2-D object recognition systems are model-based. In such systems, the representation of each of a known set of objects are precompiled and stored in a database of models. Later, they are used to recognize the image of an object in each instance. In this thesis, the approach method for the 2-D object recognition is treating an object boundary as a string of structral units and utilizing string matching to analyze the scenes. To reduce string matching time, models are rebuilt by means of fuzzy c-means clustering algorithm. In this experiments, the image of objects were taken at initial position of a robot from the CCD camera, and the models are consturcted by the proposed algorithm. After that the image of an unknown object is taken by the camera at a random position, and then the unknown object is identified by a comparison between the unknown object and models. Finally, the amount of translation and rotation of object from the initial position is computed.

A Corner Matching Algorithm with Uncertainty Handling Capability

  • Lee, Kil-jae;Zeungnam Bien
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1997년도 춘계학술대회 학술발표 논문집
    • /
    • pp.228-233
    • /
    • 1997
  • An efficient corner matching algorithm is developed to minimize the amount of calculation. To reduce the amount of calculation, all available information from a corner detector is used to make model. This information has uncertainties due to discretization noise and geometric distortion, and this is represented by fuzzy rule base which can represent and handle the uncertainties. Form fuzzy inference procedure, a matched segment list is extracted, and resulted segment list is used to calculate the transformation between object of model and scene. To reduce the false hypotheses, a vote and re-vote method is developed. Also an auto tuning scheme of the fuzzy rule base is developed to find out the uncertainties of features from recognized results automatically. To show the effectiveness of the developed algorithm, experiments are conducted for images of real electronic components.

  • PDF

확장된 퍼지인식맵을 이용한 고장진단 시스템의 설계 (Design of fault diagnostic system by using extended fuzzy cognitive map)

  • 이쌍윤;김성호;주영훈
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.860-863
    • /
    • 1997
  • FCM(Fuzzy Cognitive Map) is a fuzzy signed directed graph for representing causal reasoning which has fuzziness between causal concepts. Authors have already proposed FCM-based fault diagnostic scheme. However, the previously proposed scheme has the problem of lower diagnostic resolution. In order to improve the diagnostic resolution, a new diagnostic scheme based on extended FCM which incorporates the concept of fuzzy number into FCM is developed in this paper. Furthermore, an enhanced TAM(Temporal Associative Memory) recall procedure and pattern matching scheme are also proposed.

  • PDF

퍼지패턴매칭에 의한 음성인식에 관한 연구 (A Study on Speech Recognition Using Fuzzy Pattern Matching)

  • 이기영
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1991년도 학술발표회 논문집
    • /
    • pp.3-6
    • /
    • 1991
  • 본 연구에서는 음성의 패턴작성법을 개선하고 음성인식율을 향상시키기 위하여 퍼지패턴매칭을 개선한 뉴럴퍼지패턴매칭에(a neural-fuzzy pattern matching)의해 특정화자 고립단어인식을 수행하였다. 이 방법에서는 신경회로망의 연상기억에 의한 사상에 의해 패턴을 작성하여 주파수변동을 흡수하고 표준패턴고 선형매칭에 의해 유사도를 측정하여 인식하므로써 시간변동의 문제를 보완하였다. 또한, 이 방법에서 사용하는 특징피라미터는 2진화 스펙트럽이며, 유사도는 논리연산에 의해 측정되기 때문에 종래의 왜곡척도를 이용한 DTW 방법에 비해 기억용량과 계산량이 매우 작다. 이 방법의 인식성능을 평가하기 위하여 남녀가 발성한 28개의 도시명을 대상으로 인식실험을 수행한 결과, 신경회로망을 이용하지 않은 퍼지패턴매칭보다 오인식을 감소시켰으며, 뉴럴-퍼지 패턴매칭에 의한 특정화자 고립단어인식의 우수성을 확인하였다.

  • PDF