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Abstract

In this paper, it is shown how Fuzzy Pattern Matching can be applied to diagnosis of the most common faults of
Rotating Machinery. The whole diagnosis process has been divided in three steps: Fault Detection, Fault Isolation
and Fault Identification, whose possible results are described by linguistic patterns. Diagnosis will consist in
obtaining a set of matching indexes that express the compatibility of the fuzzified features extracted from the
measured vibration signals, with the knowledge contained in the corresponding patterns.
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1. Introduction

Unexpected failures of critical machinery can have
disastrous economic consequences for production in an
industrial plant. For this reason, over the years an
increasing importance has been given to maintenance
programs for industrial equipment. One of the
maintenance policies that has proven to be most
efficient is that of Predictive Maintenance. Under this
maintenance philosophy, through continuous or
periodic measurement and observation of certain
properties of a machine, failures can be detected and
diagnosed before they are fully developed. In this way,
correction of these faults can be planned ahead, and
carried out at the most convenient time.

In the case of rotating machinery ( such as industrial
motors, pumps, fans or gearboxes), analysis of the
vibrations measured periodically at critical points of
the machire can produce an abundant information
about the state of development of different possible
faults, like machine unbalance, axis misalignment, ball
bearing or gear related faults, eccentricities,
mechanical looseness, etc. The interpretation of this
data is a complex process , specially since more
information can now be extracted from the vibration
signal of a machine through new signal processing
techniques. In recent years, Artificial Intelligence
techniques are starting to be applied for the
implementation of automatic diagnostic systems based
on vibration analysis. Different approaches for this
problem have been based on traditional Expert
Systems, Pattern Recognition Techniques or Artificial
Neural Networks.

In this paper, a methodology based on Fuzzy Pattern
Matching {2] for fault diagnosis in rotating machinery
using vibration data is proposed. With this approach,
the Vibration Analysis expert's knowledge can be
implemented using linguistic terms, while the
uncertainties generated in the vibration features’
measurement process can be dealt with . Being a
knowledge-based approach, no previous data of the
fault states of the machine is needed for its
implementation. Basically, the method is very similar
to Fuzzy Matching techniques that have been

successfully applied in Medical Diagnosis and
Information Retrieval Systems, though including some
specific characteristics that are necessary for the better
interpretation of vibration data.

2, Elements of the Fuzzy Diagnosis System

The faults that our system pretends to diagnose are
unbalance, misalignment, and three basic types of ball
bearing faults. A previous step for diagnosis will be
the measurement of the vibration time signal at
selected points of the target machinery. Through
intensive signal processing, other additional signals
(frequency spectrum, cepstrum and envelope
spectrum), that contain important information for fault
isolation, will also be obtained. Out of these signals, a
set, F, of those features that show a characteristic
behavior in the presence of a fault, can be extracted.
Some features will have an statistical nature (kurtosis,
crest factor, standard deviation...) and shall be
measured in the time signal. Others will be obtained
from the frequency domain signals, like vibration
levels or the amplitudes of the signal in the rotating
frequency, defect frequencies, its harmonics and side-
bands. In order to take into account different causes
for uncertainty that appear during the signal
measurement and features extraction process, the
elements of F will be normalized, and through a
fuzzification process, converted into fuzzy numbers
with triangular shape membership functions. The
resulting set, S, shall be called the set of fuzzy
symptoms and shall be the input for the fuzzy
diagnosis system.

Diagnosis will consist in determining whether the
set of measured fuzzy symptoms matches the
knowledge previously implemented in the system
about the evolution of the different faults under study.
This will be done using the three classic steps of
industrial diagnosis, suggested by J. Gertler [4]:

1. Fault Detection: Noticing in something is going
wrong in the system

2. Fault Isolation: Finding out the location of the
fault.
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3. Fault Identification: Measuring the size of the
fault.

All three processes will be accomplished through
the use of Fuzzy Pattern Matching, as it is indicated in
Fig.1.
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Fig. 1. Fuzzy Diagnosis Process.
2.1 Fuzzy Fault Detection

The Fuzzy Fault Detection process will try to
establish whether the system has entered an abnormal
(faulty) state. It is based on those fuzzy symptoms that
show a characteristic_behavior in the presence of any
of the faults under study. This subset shall be called

detection symptoms set, S’CS. Let’s denote by S’ the
set of measured fuzzy symptoms. The measured
detection symptoms subset, 8" CS’, shall be matched
with a fuzzy pattern composed of s, requirements of
the following type:

[NOT] ((S"isA,) [OR(S"isA,)
(8" isA.)..11) (G=1...n)

[OR
(1)

Req.j:

Example: ( (Vibration Level (5-40 KHz) is increased)
OR (Vibration Level (0-1 KHz) is increased))

Here, the S”, S”,S°,, ... are detection symptoms,
while A, A, ,A, ... express different fuzzy attributes for
these symptoms: normal, increased, slightly increased,
quite increased, markedly increased, decreased,
slightly decreased, quite decreased and markedly
decreased (see Fig. 2). They have been modeled as
possibility distributions with triangular and trapezoidal
shapes. The variable symptoms that appear in a given
detection requirement .; will normally be the same
symptom adopting different attributes, or symptoms
that are in some way related (like, as in the example,
vibration levels measured over different frequency
ranges).
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Fig 2. Possibility Distributions of the Fuzzy Attributes.

For each requirement j, a matching index, I1,,,; ,that
expresses the compatibility of the subset of measured
detection symptoms, S°°, with the conditions
represented by the requirement, can be obtained by
matching all the measured detection symptoms S”°,,
s’ ST, with their corresponding fuzzy
attributes A, A,, A,... through possibility measures
[,=sup (S°, N A,), (expressed graphically in Fig. 3),
and aggregating them using the maximum operator:

I, =T, VI v ...

As it s natural, if the requirement is modified by a
NOT operator, its matching index will be
complemented:

M, = 1- LI, v...)

The global matching index, I, for the detection
pattern shall be obtained by aggregating all of the
requirements’ matching indexes through the AND
operator: I, =TI, AND...1I, AND ...II . This
index expresses the possibility that the machine is in
abnormal state, according to the detection pattern. The
type of AND operator chosen will clearly influence the
Fuzzy Detection process’ output. If, for example, a
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Fig.3. Matching of symptom S and attribute A using a
Possibility Measure.

non compensated operator, like the minimum, is
selected, it will result in a robust detection process,
producing very few false detection alarms. However,
the process will also be less sensible to detect small
faults, in which all of the requirements may not be
fully met. Therefore, and, as suggested by E. Sanchez
[5], Salton’s Soft- AND operator has been elected
for this purpose:

2

xANDyzl_[a—mn;a_yy}

(pe (1,20))

Low values of p shall be used for sensible detection,
while high values for p are chosen when a robust
detection strategy is preferred.

2.1 Fuzzy Fault Isolation

If a fault has been considered detected, the
isolation process will try to determine which of the
faults under study is the one that has appeared in the
system. This process is very similar to Fault Detection,
although with some differing characteristics. First, the
measured fuzzy symptoms, S’, will be matched against
five patterns describing the five faults under study.
The highest matching index (possibility measure) will
correspond to the fault that has been considered
detected. If this matching index is lower than a certain
threshold, an unknown fault will be considered
detected.

In Fault Isolation, the requirements that compose
the different fault’s patterns can have the same
structure as in Fault Detection (equation 1). However,
some very useful symptoms for fault isolation are the
amplitudes of some special frequencies (and its
harmonics and side-bands) measured in the frequency
spectrum, cepstrum or envelope spectrum. In order to
evaluate these features, the Vibration Analysis expert
may use rules of thumb like “if many ORF envelope
spectrum harmonics are markedly increased then an
ORF fault has appeared” or “if some low frequency
IRF power spectrum harmonics and side-bands are
increased, we may have an incipient IRF Fault”. This
type of knowledge can be handled better with the use
of Fuzzy Quantifiers. For this reason, some of the
requirements of the Fault Isolation patterns will have
the form:

Req.j: [NOT] ((@,S5, arcA,)

[OR(QS, are A,)...11) 3)
Example: (At least Some Rotating Frequency
Harmonics (Spectrum) are Markedly Increased )

Here, Q.. O,... are Fuzzy Quantifiers.

The matching process of the set of measured
symptoms S’ with the requirements that make use of
Fuzzy Quantifiers is the same as for the requirements
depicted by (1), though including the usual
mathematical treatment for handling Fuzzy Quantifiers
of the second kind [6].

Another important notion that is included in Fault
Isolation is that of symptom-fault sensibility. In this
paper, the numeric sensibility of symptom £ to Fault ,
will be expressed as T,. It is a non dimensional factor
that expresses how much the presence of Fault i affects
the magnitude of symptom k%, and can be estimated
numerically as [3]:

TszASk'ﬁ'
AFS,

4

Usually, the numerical estimation of a fault’s size
can be a difficult task, and it may not always be
feasible to apply this equation. In these cases, the
sensibility values will be set according to the expert’s
opinion,

It is obvious that if a symptom j is very sensible
towards a fault i (high 7)), it will be a more
discriminating indicator of the presence of fault / than
a less sensible symptom. As it is assumed that all of
the symptoms that appear in every requirement j of the
pattern for isolation of Fault ;i have similar symptom-
fault sensibilities, the sensibility concept can be used
to attach to every requirement j a weight, w,, that
expresses its importance towards isolation of Fault i:

7,
W, =— 5
max, T,
(for non negated requirements)

T
max, T,
(for negated requirements)

(6)

After all the requirements’ matching indexes have
been obtained ( I, I1,, ...) for the isolation pattern
for Fault i , they will be aggregated taking into account
the weights w,. Again, Salton’s weighted Soft- AND
operator (5] is used:

1
W, (1=x) +w, (- y)T

P P
w,” +w,

)]

(x,w,) AND (y,wv)———l—[

(here, w, and w, are the weights of variables x and y).
This formula can easily be extended for more than
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Table 1. Diagnosis Results.

4 Results DETECTION ISOLATION IDENTIFICATION
pane | AN | Nt | R onr | wne [ wr Junsa [aasu [R[PRGH | icpien [R
1| Incipient 10 00 |/l0.608|0019] 0.008] 00 | 00 |¥] 0075 | 0659 |V
2 | Incipient 1.0 00 | |0.695[0019} 0007/ 00 | 00 j«¥/]| o009 | 0885 |«
3| ncipient 0.676 | 0324 [« ]0.603 [0019|0007| 00 | 0o0ssl¥| 0091 | 10 |«
4 | Incipient 0.545 | 0455 |« ]0.598 [0.02 [0007|00 | 00 || 00 0370 |«
5 De(V)eli%ped 1.0 0.0  |0.530 | 0.019 | 0.007 | 0.0 00 || 0695 | 0188 |/
6 Deg{ﬁged 1.0 0.0 |s/]0.765]|0.019| 001 | 0.0 00 |/] 10 0.091 |/
7 Deg{ged 1.0 00 || 0.889] 00200 0.010 0.001| 0.054|¢| 1.0 0.091 |/
s | Deyasped 1.0 00 |«]10 |o0020] 0007 0130j00 [«] 10 0.091 |«
9| Developed 1.0 00 |v|0.145] 0020 0.007| 0.115 [ 0016 | X| o781 | 0081 |V
10| Deyeioped 1.0 00 |¥]0060| 0.994| 0.007| 0.0 |o0.066|¥| 0.0 10 |X
1 Delvl«{igped 1.0 00 |¥]0060| 1.0 | 0007 00 j00 |V| 10 00. |«
12| Deyeloped 1.0 00 |Y]o060| 1.0 | 0007} 00 |00 |¥} 10 00 |v/
13| Incipieat 0.857 | 0143 [¥]0.029]0.449]| 0007 00 |00 |¥Y]| o104 | 067 |¥
14| Incipient 0514 | 0486 [¥]o0020]| 1.0 | 0010 00 [00 |¥]| 0076 | 0799 |/
15 | Incipient 1.0 00 ||0020 10| 0007 0016{ 0.066|¥] 0.126 | 0306 |V
16 | Incipient 1.0 00 |¥f0.029| 1.0 | 0007 00 |oo [|¥]| o126 0399 |V
7| N 0410 | 0590 |V
18] pNe 043 | o570 |V
19 | viniionnrent | 0978 | 0022 [}o073] 0.0 [0087] 0027 10 |¥] 10 00 |V
20 | Developed | 1.0 00 |¥|o12s| 00|00 | 10 [00ss]¥| 1.0 | 00 |/
21| ymtaloped | 1.0 00 |/o0.023|0156] 0002 0.027| 1.0 || 10 00 |/
22 | Develped 1.0 00 |V]0126| 00 | 00 | 1.0 0066 |¥]| 10 0.0 V4
23 Mig‘;;;"‘g::t 1.0 0.0 Y0023 | 0157|0002 0.027 | 1.0 || 10 00 |
24| Developed L0 00 |¥[o126| 00 | 00 | 1.0 [00es || 1.0 00 |/

two variables.
Low values of p shall be used for sensible isolation,
while high values for p are chosen for robust isolation.

2.3 Fuzzy Fault Identification

Fuzzy Fault Identification pretends to measure the
fauit’s size. Now, the measured symptoms are mat-

ched to two patterns: incipient or well developed state.
The requirements are similar to the ones of Fault
Isolation. However, as there is no need to discriminate
between different fault types, weights have not been
attached to the Identification requirements.
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3. Application of the Diagnosis Method

Table 1 shows the results of applying the proposed
diagnosis method to a set of 24 vibration samples
obtained from a test machine in which unbalance,
misalignment and two types of ball bearing faults
(Outer Race Fault and Inner Race Fault) have been
mduced. A set of over 200 fuzzy symptoms measured
in everyone of these vibration samples, was matched
with a generic detection pattern and with isolation and
identification patterns that described unbalance,
misalignment, Outer Race Fault (ORF), Inner Race
Fault (IRF), and Ball Fault (BF). As the results prove,
the method can be applied with a good degree of
reliability for diagnosis of these faults. However, when
several faults occur at the same time, the method has a
difficulty for diagnosing all of the faults. A more
profound diagnosis study (with the implementation of
isolation patterns that describe several faults appearing
at the same time) is needed for these cases.

Application of the diagnosis method also showed
the importance that the values taken by the weights of
the isolation requirements have in order to get good
performance results. The best results (shown in Table
1) were obtained after the isolation weights were tuned
using a diagnosis optimization method based on
Genetic Algorithms. With this optimization method,
diagnosis performance can be improved for a specific
machine if enough fault data for this machine is
available. This will be the topic of a future research

paper.
4. Concluding Remarks

A knowledge-based diagnosis method for rotating
machinery using vibration data has been developed
that takes into account several sources of imprecision.
The system’s knowledge base can be implemented in
linguistic terms, resulting in a simple interface with the
Vibration Analysis expert. The system’s performance
has been validated with a set of 24 vibration samples,
giving satisfactory diagnosis results.
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