• 제목/요약/키워드: Fuzzy Partitions

검색결과 35건 처리시간 0.029초

FUZZY EQUIVALENCE RELATIONS AND FUZZY PARTITIONS

  • HUR, KUL;KANG, HEE WON;LEE, KEON CHANG
    • 호남수학학술지
    • /
    • 제28권3호
    • /
    • pp.291-315
    • /
    • 2006
  • By using the new concepts of fuzzy equivalence relations and fuzzy partitions which Dib and Youssef introduced, we obtains fuzzy analogues of many results concerning ordinary equivalence relations and partitions. Also, we give some examples.

  • PDF

두 점과 분할 카디날리티가 주어진 퍼지 균등화조건을 갖는 퍼지분할 (Fuzzy Partitioning with Fuzzy Equalization Given Two Points and Partition Cardinality)

  • 김경택;김종수;강성열
    • 산업경영시스템학회지
    • /
    • 제31권4호
    • /
    • pp.140-145
    • /
    • 2008
  • Fuzzy partition is a conceptual vehicle that encapsulates data into information granules. Fuzzy equalization concerns a process of building information granules that are semantically and experimentally meaningful. A few algorithms generating fuzzy partitions with fuzzy equalization have been suggested. Simulations and experiments have showed that fuzzy partition representing more characteristics of given input distribution usually produces meaningful results. In this paper, given two points and cardinality of fuzzy partition, we prove that it is not true that there always exists a fuzzy partition with fuzzy equalization in which two of points having peaks fall on the given two points. Then, we establish an algorithm that minimizes the maximum distance between given two points and adjacent points having peaks in the partition. A numerical example is presented to show the validity of the suggested algorithm.

플립 칩 BGA 최종 검사를 위한 최대퍼지엔트로피 기반의 다중임계값 선정 알고리즘 (A Multiple Threshold Selection Algorithm Based on Maximum Fuzzy Entropy for the Final Inspection of Flip Chip BGA)

  • 김경범
    • 한국정밀공학회지
    • /
    • 제21권4호
    • /
    • pp.202-209
    • /
    • 2004
  • Quality control is essential to the final product in BGA-type PCB fabrication. So, many automatic vision systems have been developed to achieve speedy, low cost and high quality inspection. A multiple threshold selection algorithm is a very important technique for machine vision based inspection. In this paper, an inspected image is modeled by using fuzzy sets and then the parameters of specified membership functions are estimated to be in maximum fuzzy entropy with the probability of the fuzzy sets, using the exhausted search method. Fuzzy c-partitions with the estimated parameters are automatically generated, and then multiple thresholds are selected as the crossover points of the fuzzy sets that form the estimated fuzzy partitions. Several experiments related to flip chip BGA images show that the proposed algorithm outperforms previous ones using both entropy and variance, and also can be successfully applied to AVI systems.

Application of KITSAT-3 Images: Automated Generation of Fuzzy Rules and Membership Functions for Land-cover Classification of KITSAT-3 Images

  • Park, Won-Kyu;Choi, Soon-Dal
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 1999년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.48-53
    • /
    • 1999
  • The paper presents an automated method for generating fuzzy rules and fuzzy membership functions for pattern classification from training sets of examples and an application to the land-cover classification. Initially, fuzzy subspaces are created from the partitions formed by the minimum and maximum of individual feature values of each class. The initial membership functions are determined according to the generated fuzzy partitions. The fuzzy subspaces are further iteratively partitioned if the user-specified classification performance has not been archived on the training set. Our classifier was trained and tested on patterns consisting of the DN of each band, (XS1, XS2, XS3), extracted from KITSAT-3 multispectral scene. The result represents that our classification method has higher generalization power.

  • PDF

Fuzzy Learning Method Using Genetic Algorithms

  • Choi, Sangho;Cho, Kyung-Dal;Park, Sa-Joon;Lee, Malrey;Kim, Kitae
    • 한국멀티미디어학회논문지
    • /
    • 제7권6호
    • /
    • pp.841-850
    • /
    • 2004
  • This paper proposes a GA and GDM-based method for removing unnecessary rules and generating relevant rules from the fuzzy rules corresponding to several fuzzy partitions. The aim of proposed method is to find a minimum set of fuzzy rules that can correctly classify all the training patterns. When the fine fuzzy partition is used with conventional methods, the number of fuzzy rules has been enormous and the performance of fuzzy inference system became low. This paper presents the application of GA as a means of finding optimal solutions over fuzzy partitions. In each rule, the antecedent part is made up the membership functions of a fuzzy set, and the consequent part is made up of a real number. The membership functions and the number of fuzzy inference rules are tuned by means of the GA, while the real numbers in the consequent parts of the rules are tuned by means of the gradient descent method. It is shown that the proposed method has improved than the performance of conventional method in formulating and solving a combinatorial optimization problem that has two objectives: to maximize the number of correctly classified patterns and to minimize the number of fuzzy rules.

  • PDF

퍼지 규칙기반 분류시스템에서 퍼지 분할의 선택방법 (Selection Method of Fuzzy Partitions in Fuzzy Rule-Based Classification Systems)

  • 손창식;정환묵;권순학
    • 한국지능시스템학회논문지
    • /
    • 제18권3호
    • /
    • pp.360-366
    • /
    • 2008
  • 퍼지 규칙기반 분류 시스템에서 초기의 퍼지 분할은 주어진 데이터가 가진 속성들의 도메인을 고려함으로서 결정되어지고, 최적의 분류 경계면은 초기에 정의된 퍼지 분할의 파라미터들을 조정함으로서 찾을 수 있다. 본 논문에서는 학습과정들을 사용하지 않고 패턴분류의 성능을 최대화하기 위해 통계적 정보에 기반을 둔 퍼지 분할의 선택방법을 제안한다. 제안된 방법에서 통계적 정보는 주어진 수치적인 데이터로부터 각 입력 속성의 '불확실성 영역', 즉 패턴분류문제에서 분류 경계면이 결정되는 영역을 추출하기 위해 사용되었다. 또한 통계적인 정보에 의해서 생성된 퍼지 분할구간에 대응하는 후보 규칙들을 추출하기 위한 방법과 그 후보 규칙들 간의 커플링 문제를 최소화하기 위한 방법도 추가적으로 논의하였다. 실험에서는 제안된 방법의 효용성을 보이기 위해 IRIS와 New Thyroid Cancer 데이터를 사용한 기존 패턴분류 방법들과의 분류 정확성을 비교하였고, 그 결과들로부터 제안된 방법이 기존의 방법들보다 더 좋은 분류 정확성을 제공함을 확인할 수 있었다.

${\epsilon}$-FUZZY EQUIVALENCE RELATIONS

  • Chon, Inheung
    • Korean Journal of Mathematics
    • /
    • 제14권1호
    • /
    • pp.71-77
    • /
    • 2006
  • We find the ${\epsilon}$-fuzzy equivalence relation generated by the union of two ${\epsilon}$-fuzzy equivalence relations on a set, find the ${\epsilon}$-fuzzy equivalence relation generated by a fuzzy relation on a set, and find sufficient conditions for the composition ${\mu}{\circ}{\nu}$ of two ${\epsilon}$-fuzzy equivalence relations ${\mu}$ and ${\nu}$ to be the ${\epsilon}$-fuzzy equivalence relation generated by ${\mu}{\cup}{\nu}$. Also we study fuzzy partitions of ${\epsilon}$-fuzzy equivalence relations.

  • PDF

퍼지 균등화존건을 갖는 2단 퍼지분할 (Two-Phased Fuzzy Partitions with Funny Equalization)

  • Kyeongtaek Kim;Chongsu Kim
    • 산업경영시스템학회지
    • /
    • 제25권6호
    • /
    • pp.54-58
    • /
    • 2002
  • 퍼지 균등화는 어의론적으로 의미있고, 실험적으로 의미있는 언어레이블을 붙이도록 하는 조건이다. 지금까지 발표된 퍼지 균등화조건을 갖는 퍼지분할을 생성하는 알고리듬은 주어진 데이터에 대하여, 오직 하나의 퍼지분할만을 생성할 수 있었다. 만일 생성된 퍼지 분할이 더 이상 유용하지 못한 것으로 판명되면, 이 알고리듬은 주어진 데이터에 대한 퍼지 균등화조건을 갖는 또 다른 퍼지분할을 생성할 수 없다. 이는 생성된 퍼지분할을 사용하여 탐색적 발견을 수행하는 데이터마이닝의 경우 더 이상 프로세스가 진행되지 못함을 의미한다. 본 연구에서는 주어진 데이터에 대한 퍼지 균등화조건을 갖는 서로 다른 두 퍼지분할이 존재한다면, 어떠한 관계가 있는지를 증명하고, 이를 위치적 특성으로 서술한다. 또한 이 특성을 이용하여 퍼지 균등화조건을 갖는 퍼지분할을 원하는 만큼 생성할 수 있는 알고리듬을 제시하고, 예를 들어 설명한다.

Fuzzy c-Regression Using Weighted LS-SVM

  • Hwang, Chang-Ha
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 한국데이터정보과학회 2005년도 추계학술대회
    • /
    • pp.161-169
    • /
    • 2005
  • In this paper we propose a fuzzy c-regression model based on weighted least squares support vector machine(LS-SVM), which can be used to detect outliers in the switching regression model while preserving simultaneous yielding the estimates of outputs together with a fuzzy c-partitions of data. It can be applied to the nonlinear regression which does not have an explicit form of the regression function. We illustrate the new algorithm with examples which indicate how it can be used to detect outliers and fit the mixed data to the nonlinear regression models.

  • PDF

국부 퍼지 클러스터링 PCA를 갖는 GMM을 이용한 화자 식별 (Speaker Identification Using GMM Based on Local Fuzzy PCA)

  • 이기용
    • 음성과학
    • /
    • 제10권4호
    • /
    • pp.159-166
    • /
    • 2003
  • To reduce the high dimensionality required for training of feature vectors in speaker identification, we propose an efficient GMM based on local PCA with Fuzzy clustering. The proposed method firstly partitions the data space into several disjoint clusters by fuzzy clustering, and then performs PCA using the fuzzy covariance matrix in each cluster. Finally, the GMM for speaker is obtained from the transformed feature vectors with reduced dimension in each cluster. Compared to the conventional GMM with diagonal covariance matrix, the proposed method needs less storage and shows faster result, under the same performance.

  • PDF