• Title/Summary/Keyword: Fuzzy PI+D Controller

Search Result 27, Processing Time 0.023 seconds

A design of Fuzzy PI+Fuzzy D Controller for Control of 3 Phase Induction Motor (3상 유도모터의 제어를 위한 퍼지 PI+퍼지 D 제어기의 구현)

  • Choo, Yeon-Gyu;Lee, Kwang-Seok;Kim, Hyun-Deok;Kim, Seung-Cheol
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.713-716
    • /
    • 2007
  • In this paper, we consider one of robust control system, fuzzy PI+fuzzy D controller dealing with noise, load, changed parameters of plant. We apply PI+D controller with a design for output of differential function and, we plan fuzzy controller with input for PID parameter of PI+D controller so We design control system meet with the change of environment with robust in relation to change of parameter. Fuzzy control is possessed of easy 4 rules and membership function and We design fuzzy PI+fuzzy D controller. Plant of this paper make a choice of 3 phase induction motor.

  • PDF

A design of Fuzzy PI+Fuzzy D Controller for Control of 3 Phase Induction Motor (3상 유도모터의 제어를 위한 퍼지 PI+퍼지 D 제어기의 구현)

  • Choo, Yeon-Gyu;Lee, Kwang-Seok;Kim, Hyun-Deok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.6
    • /
    • pp.1176-1181
    • /
    • 2007
  • In this paper, we consider one of robust control system, fuzzy PI+fuzzy D controller dealing with noise, load, changed parameters of plant. We apply PI+D controller with a design for output of differential function and, we plan fuzzy controller with input for PID parameter of PI+D controller so We design control system meet with the change of environment with robust in relation to change of parameter. Fuzzy control is possessed of easy 4 rules and membership function and We design fuzzy PI+fuzzy D controller. Plant of this paper make a choice of 3 phase induction motor.

A Study on the self-tuning of the design variables and gains using Fuzzy PI+D Controller (퍼지 PI+D 제어기를 이용한 설계변수와 이득의 자기동조에 관한 연구)

  • Jang, Cheol-Su;Choi, Jeong-Won;Oh, Young-Seok;Chae, Seog
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.3
    • /
    • pp.355-367
    • /
    • 2007
  • This paper proposes a design method of the PI(Proportional-Integral)+D(Derivative) controller using self-tuning of the design variables and controller gains. The used fuzzy PI+D controller is the approximated conventional continuos time linear PI+D controller and the used fuzzification method is the fuzzy single tone and the adapted defuzzification method is the simplified tenter of gravity. Fuzzy estimation result would be calculated in the other function elements from the classified fuzzy variables and the result determined by the design variables decides the controller gains. As a result, the proposed method shows the capability of the high speed tuning and can be applied to the case of input variables with many fuzzy partitions and also can bring out the advantage to reduce the reconstruction(digital sampling reconstruction) error. Most simulation results show that this controller makes much bettor efficiency and improvement by using design variables and controller gains.

A Study on Filament Winding Tension Control using a fuzzy-PID Algorithm (퍼지-PID 알고리즘을 이용한 필라멘트 와인딩 장력제어에 관한 연구)

  • 이승호;이용재;오재윤
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.3
    • /
    • pp.30-37
    • /
    • 2004
  • This thesis develops a fuzzy-PID control algorithm for control the filament winding tension. It is developed by applying classical PID control technique to a fuzzy logic controller. It is composed of a fuzzy-PI controller and a fuzzy-D controller. The fuzzy-PI controller uses error and integrated error as inputs, and the fuzzy-D controller uses derivative of error as input. The fuzzy-PI controller uses Takagi-Sugeno fuzzy inference system, and the fuzzy-D controller uses Mamdani fuzzy inference system. The fuzzy rule base for the fuzzy-PI controller is designed using 19 rules, and the fuzzy rule base for the fuzzy-D controller is designed using 5 rules. A test-bed is set-up for verifying the effectiveness of the developing control algorithm in control the filament winding tension. It is composed of a mandrel, a carriage, a force sensor, a driving roller, nip rollers, a creel, and a real-time control system. Nip rollers apply a vertical force to a filament, and the driving roller drives it. The real-time control system is developed by using MATLAB/xPC Target. First, experiments for showing the inherent problems of an open-loop control scheme in a filament winding are performed. Then, experiments for showing the robustness of the developing fuzzy-PID control algorithm are performed under various working conditions occurring in a filament winding such as mandrel rotating speed change, carriage traversing, spool radius change, and reference input change.

Fuel Flow Control of Turbojet Engine Using the Fuzzy PI+D Controller (퍼지 PI+D 제어기를 이용한 터보제트 엔진의 연료유량 제어)

  • Jung, Byeong-In;Jie, Min-Seok
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.3
    • /
    • pp.449-455
    • /
    • 2011
  • In this paper, Proposed controller prevent compressor surge and reduce the acceleration time of the fuel flow control system for turbo-jet engine. Turbo-jet engine controller is designed by applying fuzzy PI+D control algorithm and make an inference by applying Mamdani's inference method and the defuzzification using the center of gravity method. Fuzzy inference results are used as the fuel flow control inputs to prevent compressor surge and flame-out for turbo-jet engine and the controller is designed to converge to the desired speed quickly and safely. Using MATLAB to perform computer simulations verified the performance of the proposed controller.

Design and Implementation for rubust Fuzzy Digital PI+D Control system (강인한 퍼지 디지털 PI+D 제어 시스템의 설계 및 구현)

  • 권태익;김태언;박윤명;박재형;임영도
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2001.06a
    • /
    • pp.137-140
    • /
    • 2001
  • In this paper, Fuzzzy Digital PI+D Controller plans for load, noise, plant change, Fuzzy Controller makes use of simple four rule and membership function, and plant used three phase Induction Motor. Characteristic of system compared from experimentation respectively the proposed Control System, Digital PID Control and Digital PI+D Control System.

  • PDF

Design of fuzzy digital PI+D controller using simplified indirect inference method (간편 간접추론방법을 이용한 퍼지 디지털 PI+D 제어기의 설계)

  • Chai, Chang-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.1
    • /
    • pp.35-41
    • /
    • 2000
  • This paper describes the design of fuzzy digital PID controller using a simplified indirect inference method. First, the fuzzy digital PID controller is derived from the conventional continuous-time linear digital PID controller,. Then the fuzzification, control-rule base, and defuzzification using SIM in the design of the fuzzy controller are discussed in detail. The resulting controller is a discrete-time fuzzy version of the conventional PID controller, which has the same linear structure, but are nonlinear functions of the input signals. The proposed controller enhances the self-tuning control capability, particularly when the process to be controlled is nonlinear. When the SIIM is applied the fuzzy inference results can be calculated with splitting fuzzy variables into each action component and are determined as the functional form of corresponding variables. So the proposed method has the capability of the high speed inference and adapting with increasing the number of the fuzzy input variables easily. Computer simulation results have demonstrated that the proposed method provides better control performance than the one proposed by D. Misir et al.

  • PDF

Design of Nonlinear Fuzzy PI+D Controller Using Simplified Indirect Inference Method (간편 간접추론방법을 이용한 비선형 퍼지 PI+D 제어기의 설계)

  • Chai, Chang-Hyun;Lee, Sang-Tae;Ryu, Chang-Ryul
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.2839-2842
    • /
    • 1999
  • This paper describes the design of fuzzy PID controller using simplified indirect inference method. First, the fuzzy PID controller is derived from the conventional continuous time linear PID controller. Then the fuzzification, control-rule base, and defuzzification using SIIM in the design of the fuzzy controller are discussed in detail. The resulting controller is a discrete time fuzzy version of the conventional PID controller, which has the same linear structure. but are nonlinear functions of the input signals. The proposed controller enhances the self-tuning control capability, particularly when the process to be controlled is nonlinear. When the SIIM is applied, the fuzzy inference results can be calculated with splitting fuzzy variables into each action component and are determined as the functional form of corresponding variables. So the proposed method has the capability of the high speed inference and adapting with increasing the number of the fuzzy input variables easily. Computer simulation results have demonstrated the superior to the control performance of the one proposed by D. Misir et al.

  • PDF

PI and Fuzzy Logic Controller Based 3-Phase 4-Wire Shunt Active Filters for the Mitigation of Current Harmonics with the Id-Iq Control Strategy

  • Mikkili, Suresh;Panda, Anup Kumar
    • Journal of Power Electronics
    • /
    • v.11 no.6
    • /
    • pp.914-921
    • /
    • 2011
  • Commencing with incandescent light bulbs, every load today creates harmonics. Unfortunately, these loads vary with respect to their amount of harmonic content and their response to problems caused by harmonics. The prevalent difficulties with harmonics are voltage and current waveform distortions. In addition, Electronic equipment like computers, battery chargers, electronic ballasts, variable frequency drives, and switching mode power supplies generate perilous amounts of harmonics. Issues related to harmonics are of a greater concern to engineers and building designers because they do more than just distort voltage waveforms, they can overheat the building wiring, cause nuisance tripping, overheat transformer units, and cause random end-user equipment failures. Thus power quality is becoming more and more serious with each passing day. As a result, active power filters (APFs) have gained a lot of attention due to their excellent harmonic compensation. However, the performance of the active filters seems to have contradictions with different control techniques. The main objective of this paper is to analyze shunt active filters with fuzzy and pi controllers. To carry out this analysis, active and reactive current methods ($i_d-i_q$) are considered. Extensive simulations were carried out. The simulations were performed under balance, unbalanced and non sinusoidal conditions. The results validate the dynamic behavior of fuzzy logic controllers over PI controllers.

A study on The Fuzzy Based PID Position controller for Step Motor Drives

  • Kim, Seung-Cheol;Cho, Yong-Sung;Park, Jae-Hyung;Kang, Shin-Chul;Bay, Gyu-Han
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1496-1499
    • /
    • 2005
  • In this paper, we applied step motor drive using a fuzzy logic control based on PID controller. A designed this controller's purpose is improved robust and autonomous characteristic in which the variation of external load affects plant parameter. Therefore, in this paper, using a fuzzy logic control based on PID controller of two fuzzy-PI and fuzzy-D is obtained decremental overshoot and a special response quality.

  • PDF