• 제목/요약/키워드: Fuzzy Optimization

검색결과 646건 처리시간 0.029초

스마트 스카이브릿지를 이용한 인접건물의 진동제어 (Vibration Control of Adjacent Buildings using a Smart Sky-bridge)

  • 강주원;채승훈;김현수
    • 한국공간구조학회논문집
    • /
    • 제10권4호
    • /
    • pp.93-102
    • /
    • 2010
  • 본 연구에서는 MR 감쇠기와 FPS를 사용하여 구성된 스마트 스카이브릿지를 제안하였으며 스마트 스카이브릿지로 연결된 인접건물의 지진응답 제어성능을 분석하였다. 이를 위하여 스마트 스카이브릿지로 연결된 10층과 20층 구조물을 예제 구조물로 선택하였고 근거리 (near fault) 및 원거리 (far fault) 지진의 특성을 가지는 El Centro 지진과 Kobe지진을 사용하여 시간이력해석을 수행하였다. 스마트 스카이브릿지블 효과적으로 제어하기 위해서 퍼지논리제어기를 개발하였으며 퍼지논리제어기를 최적화하기 위하여 다목적 유전자알고리즘을 사용하였다. 최적화결과 10층 건물의 지진응답과 20층 건물의 지진응답 사이에는 상충관계 (trade-off)가 있는 것을 알 수 있었고 다목적 유전자알고리즘을 통해서 두 건물의 지진응답 제어에 대한 퍼지논리제어거의 파레토 해집합을 구할 수 있었다. 수치해석결과 본 연구에서 제안한 스마트 스카이브릿지를 사용하면 연결된 건물의 지진응답을 효율적으로 저감시킬 수 있는 것을 알 수 있었다.

  • PDF

Application of the optimal fuzzy-based system on bearing capacity of concrete pile

  • Kun Zhang;Yonghua Zhang;Behnaz Razzaghzadeh
    • Steel and Composite Structures
    • /
    • 제51권1호
    • /
    • pp.25-41
    • /
    • 2024
  • The measurement of pile bearing capacity is crucial for the design of pile foundations, where in-situ tests could be costly and time needed. The primary objective of this research was to investigate the potential use of fuzzy-based techniques to anticipate the maximum weight that concrete driven piles might bear. Despite the existence of several suggested designs, there is a scarcity of specialized studies on the exploration of adaptive neuro-fuzzy inference systems (ANFIS) for the estimation of pile bearing capacity. This paper presents the introduction and validation of a novel technique that integrates the fire hawk optimizer (FHO) and equilibrium optimizer (EO) with the ANFIS, referred to as ANFISFHO and ANFISEO, respectively. A comprehensive compilation of 472 static load test results for driven piles was located within the database. The recommended framework was built, validated, and tested using the training set (70%), validation set (15%), and testing set (15%) of the dataset, accordingly. Moreover, the sensitivity analysis is performed in order to determine the impact of each input on the output. The results show that ANFISFHO and ANFISEO both have amazing potential for precisely calculating pile bearing capacity. The R2 values obtained for ANFISFHO were 0.9817, 0.9753, and 0.9823 for the training, validating, and testing phases. The findings of the examination of uncertainty showed that the ANFISFHO system had less uncertainty than the ANFISEO model. The research found that the ANFISFHO model provides a more satisfactory estimation of the bearing capacity of concrete driven piles when considering various performance evaluations and comparing it with existing literature.

다중 AFLC를 이용한 SynRM 드라이브의 효율 최적화 제어 (Efficiency Optimization Control of SynRM Drive using Multi-AFLC)

  • 최정식;고재섭;장미금;정동화
    • 조명전기설비학회논문지
    • /
    • 제24권5호
    • /
    • pp.44-54
    • /
    • 2010
  • SynRM 효율최적화 제어는 다른 교류전동기에 비해 SynRM의 효율이 낮기 때문에 에너지 절약과 환경보존의 관점에서 매우 중요하다. 본 논문에서는 다중 AFLC를 이용하여 철손을 고려한 SynRM의 새로운 효율 최적화 제어를 제안하였다. 최대효율에서 SynRM을 구동하기 위해 토크전류와 여자전류사이의 최적전류비를 분석하여 구한다. 본 논문에서는 동손과 철손을 최소로 하는 SynRM의 효율 최적화 제어를 제안하였다. 특정한 모터토크를 제공하는 d축과 q축 전류의 다양한 조합이 존재한다. 효율 최적화의 목적은 정상상태에서 최소 손실을 제공하는 d축과 q축 전류의 조합을 찾는 것이며, 제안된 제어기의 제어 성능은 다양한 동작조건의 분석을 통해 평가되었다. 분석된 결과는 제안된 알고리즘의 타당성을 입증한다.

유전자알고리즘을 이용한 스마트 면진시스템의 퍼지제어 (Fuzzy Control of Smart Base Isolation System using Genetic Algorithm)

  • 김현수
    • 한국지진공학회논문집
    • /
    • 제9권2호통권42호
    • /
    • pp.37-46
    • /
    • 2005
  • 현재까지 많은 스마트 면진시스템이 제안되었고 연구되어 왔다. 본 연구에서는 스마트 면진시스템의 면진장치와 보조감쇠 장치로서 새로운 형태의 마찰진자시스템(FPS)과 MR 감쇠기를 각각 사용한다. 퍼지로직제어기(FLC)가 고유의 견실성과 비선형 및 불확실성을 쉽게 다룰 수 있는 능력이 있기 때문에 MR 감쇠기의 감쇠력을 조절하는데 FLC를 사용한다. 또한 FLC의 성능을 최적화 하기 위해서는 유전자알고리즘(GA)을 사용한다. GA를 사용함으로써 소속함수의 형상을 조절하는 것뿐만 아니라 적절한 퍼지제어규칙을 결정할 수 있다. 이를 위하여 본 연구에서는 부분개선 유전자알고리즘을 사용하였다. 이 방법은 유전자의 특정부분을 향상시키는데 효율적이다. FPS와 MR 감쇠기의 동적거동을 표현하기 위해서는 뉴로?퍼지 모델을 사용한다. FLC의 최적설계를 위하여 본 연구에서 제안된 방법의 효율성은 여러 가지 역사지진을 사용하여 계산된 동적응답을 기초로 하여 평가한다. 예제해석결과 제안된 방법은 적절한 퍼지규칙을 찾을 수 있고 GA로 최적화된 FLC는 수동제어기 뿐만 아니라 전문가의 지식에 기반한 FLC와 전통적인 준능동제어기보다 더 좋은 성능을 발휘한다.

퍼지제어기를 이용한 하폐수처리공정의 최적화 (Fuzzy Control and Optimization for the Wastewater Treatment Process)

  • 천성표;김봉철;김성신
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2000년도 추계학술대회 학술발표 논문집
    • /
    • pp.452-455
    • /
    • 2000
  • There are increasingly important financial incentives and environmental consideration to improve the effluent quality of wastewater from domestic and industrial users. The activated sludge process is a widely used biological wastewater treatment process. The activated sludge process is complicated due to the many factors such as the variation of influent flowrate and concentration, the complexity of biological reactions and the various operation conditions. Nowadays, not only suspended solids and residual carbon, but also nitrogen and phosphorous concentration of the effluent water must be taken into account for the design and operation of wastewater treatment plants. Also, the effluent quality to be met are more stringent. Therefore, an intelligent control approach is required in order to successful biological nitrogen removal. In this paper, the strategies for dosage of extra carbon in the anoxic zone and DO concentration in the aerobic zone are presented and evaluated through the simulation using the denitrification layout of the IWA simulation benchmark implemented by Matlab$\^$/5.3/Simulink$\^$/3.0. The control strategy to achieve sufficient denitrification rates in an anoxic zone. Methanol is used as an external extra carbon source. The external extra carbon source is required for the nitrogen removal process because nitrogen and organic concentration are fluctuated in the influent flowrate. The dissolved oxygen is calculated by So concentration in the activated sludge model NO.1. The air flowrate of each aerobic reactor is intelligently controlled to achieve the predefined setpoints. Air flowrate is adjusted by the fuzzy logic controller that includes two inputs and one output. The objective function for the optimization procedure is designed to improve effluent quality and reduce the operating cost.

  • PDF

Web-based Three-step Project Management Model and Its Software Development

  • Hwang Heung-Suk;Cho Gyu-Sung
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 2006년도 춘계공동학술대회 논문집
    • /
    • pp.373-378
    • /
    • 2006
  • Recently the technical advances and complexities have generated much of the difficulties in managing the project resources, for both scheduling and costing to accomplish the project in the most efficient manner. The project manager is frequently required to render judgments concerning the schedule and resource adjustments. This research develops an analytical model for a schedule-cost and risk analysis based on visual PERT/CPM. We used a three-step approach: 1) in the first step, a deterministic PERT/CPM model for the critical path and estimating the project time schedule and related resource planning and we developed a heuristic model for crash and stretch out analysis based upon a time-cost trade-off associated with the crash and stretch out of the project. 2) In second step, we developed web-based risk evaluation model for project analysis. Major technologies used for this step are AHP (analytic hierarchy process, fuzzy-AHP, multi-attribute analysis, stochastic network simulation, and web based decision support system. Also we have developed computer programs and have shown the results of sample runs for an R&D project risk analysis. 3) We developed an optimization model for project resource allocation. We used AHP weighted values and optimization methods. Computer implementation for this model is provided based on GUI-Type objective-oriented programming for the users and provided displays of all the inputs and outputs in the form of GUI-Type. The results of this research will provide the project managers with efficient management tools.

  • PDF

학습과 진화의 Lamarckian 상호 적응에 의한 뉴로-퍼지 제어기의 최적 설계 (An Optimal Design of Neuro-Fuzzy Logic Controller Using Lamarckian Co-adaptation of Learning and Evolution)

  • 김대진;이한별;강대성
    • 전자공학회논문지C
    • /
    • 제35C권12호
    • /
    • pp.85-98
    • /
    • 1998
  • 본 논문은 특정 응용에 적합한 퍼지 제어기의 최적 설계 파라메터 (퍼지 규칙과 소속 함수)를 찾는데 역전파 학습 과정과 유전 알고리즘을 결합한 Lamarckian 상호적응 기법을 이용한 뉴로-퍼지 제어기의 새로운 설계 방법을 제안한다. 설계 파라메타들은 진화에 의한 전역적 탐색을 통해 높은 포함값과 유용한 퍼지 규칙들을 갖는 규칙 베이스와 작은 근사화 오차와 좋은 제어 성능을 갖는 소속 함수들을 얻도록 제어기간 파라메타 조절을 수행하며, 학습에 의한 국부적 탐색을 통해 각 퍼지 제어기가 원하는 제어 결과를 나타내도록 제어기내 파라메타 조절을 수행한다. 제안한 상호적응 설계 방법은 유전 알고리즘의 모든 세대에서 역전파 학습이 이루어지므로 보다 좋은 근사화 능력을 나타나고, 사용한 무게 중심 비퍼지화기가 정확한 비퍼지화값을 계산하므로 보다 좋은 제어 성능을 가지며, 퍼지 규칙 베이스와 소속 함수들의 최적화 탐색 과정이 입출력 공간의 같은 퍼지 분할 상에서 통합된 적응 함수에 의하여 동시에 수행되므로 탐색을 위한 작업 공간이 아주 작아지는 장점이 있다. 시뮬레이션 결과는 Lamarckian 상호 적응에 의해 얻어진 FLC가 퍼지 규칙수, 근사화 능력, 제어 성능등 모든 면에서 다른 방법에 의해 얻어진 FLC보다 가장 우수함을 보여준다.

  • PDF

MRAS Based Speed Estimator for Sensorless Vector Control of a Linear Induction Motor with Improved Adaptation Mechanisms

  • Holakooie, Mohammad Hosein;Taheri, Asghar;Sharifian, Mohammad Bagher Bannae
    • Journal of Power Electronics
    • /
    • 제15권5호
    • /
    • pp.1274-1285
    • /
    • 2015
  • This paper deals with model reference adaptive system (MRAS) speed estimators based on a secondary flux for linear induction motors (LIMs). The operation of these estimators significantly depends on an adaptation mechanism. Fixed-gain PI controller is the most common adaptation mechanism that may fail to estimate the speed correctly in different conditions, such as variation in machine parameters and noisy environment. Two adaptation mechanisms are proposed to improve LIM drive system performance, particularly at very low speed. The first adaptation mechanism is based on fuzzy theory, and the second is obtained from an LIM mechanical model. Compared with a conventional PI controller, the proposed adaptation mechanisms have low sensitivity to both variations of machine parameters and noise. The optimum parameters of adaptation mechanisms are tuned using an offline method through chaotic optimization algorithm (COA) because no design criterion is given to provide these values. The efficiency of MRAS speed estimator is validated by both numerical simulation and real-time hardware-in-the-loop (HIL) implementations. Results indicate that the proposed adaptation mechanisms improve performance of MRAS speed estimator.

통합적 인공지능 기법을 이용한 결함인식 (Crack Identification Based on Synthetic Artificial Intelligent Technique)

  • 심문보;서명원
    • 대한기계학회논문집A
    • /
    • 제25권12호
    • /
    • pp.2062-2069
    • /
    • 2001
  • It has been established that a crack has an important effect on the dynamic behavior of a structure. This effect depends mainly on the location and depth of the crack. To identify the location and depth of a crack in a structure, a method is presented in this paper which uses synthetic artificial intelligent technique, that is, Adaptive-Network-based Fuzzy Inference System(ANFIS) solved via hybrid learning algorithm(the back-propagation gradient descent and the least-squares method) are used to learn the input(the location and depth of a crack)-output(the structural eigenfrequencies) relation of the structural system. With this ANFIS and a continuous evolutionary algorithm(CEA), it is possible to formulate the inverse problem. CEAs based on genetic algorithms work efficiently for continuous search space optimization problems like a parameter identification problem. With this ANFIS, CEAs are used to identify the crack location and depth minimizing the difference from the measured frequencies. We have tried this new idea on a simple beam structure and the results are promising.

통합적 인공지능 기법을 이용한 결함인식 (Crack identification based on synthetic artificial intelligent technique)

  • 심문보;서명원
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집C
    • /
    • pp.182-188
    • /
    • 2001
  • It has been established that a crack has an important effect on the dynamic behavior of a structure. This effect depends mainly on the location and depth of the crack. To identify the location and depth of a crack in a structure, a method is presented in this paper which uses synthetic artificial intelligent technique, that is, Adaptive-Network-based Fuzzy Inference System(ANFIS) solved via hybrid learning algorithm(the back-propagation gradient descent and the least-squares method) are used to learn the input(the location and depth of a crack)-output(the structural eigenfrequencies) relation of the structural system. With this ANFIS and a continuous evolutionary algorithm(CEA), it is possible to formulate the inverse problem. CEAs based on genetic algorithms work efficiently for continuous search space optimization problems like a parameter identification problem. With this ANFIS, CEAs are used to identify the crack location and depth minimizing the difference from the measured frequencies. We have tried this new idea on a simple beam structure and the results are promising.

  • PDF