• Title/Summary/Keyword: Fuzzy Optimization

Search Result 646, Processing Time 0.029 seconds

User Assistant Soft Computing Method for 3D Effect Optimization (입체효과 최적화를 위한 사용자 보조 소프트컴퓨팅 기법)

  • Choi Woo-Kyung;Kim Seong-Joo;Jeon Hong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.1
    • /
    • pp.69-74
    • /
    • 2005
  • In this paper, we suggested user assistant soft computing method for 3D effect optimization. In order to maximize 3D effect of image, intervals among cameras have to be set up properly according to distance between cameras and an object. Two data such as interval and distance was obtained to use in neural network as the data for learning. However, if the data for learning was obtained by only human's subjective views, it could be that the obtained data was not optimal for learning because the data had an accidental ewer To obtain optimal data lot learning, we added candidature data to obtained data through data analysis, and then selected the most proper data between the candidature data and the obtained data for learning in neural network. Usually, 3D effect of image was affected by both distance from an object to cameras and an object size. Therefore, we suggested fuzzy inference model which was able to represent two factors like distance and size. Candidature data was added by fuzzy model. In the simulation result, we verified that the mote the obtained data was affected by human's subjective views, the more effective the suggested system was.

Design of Very Short-term Precipitation Forecasting Classifier Based on Polynomial Radial Basis Function Neural Networks for the Effective Extraction of Predictive Factors (예보인자의 효과적 추출을 위한 다항식 방사형 기저 함수 신경회로망 기반 초단기 강수예측 분류기의 설계)

  • Kim, Hyun-Myung;Oh, Sung-Kwun;Kim, Hyun-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.128-135
    • /
    • 2015
  • In this study, we develop the very short-term precipitation forecasting model as well as classifier based on polynomial radial basis function neural networks by using AWS(Automatic Weather Station) and KLAPS(Korea Local Analysis and Prediction System) meteorological data. The polynomial-based radial basis function neural networks is designed to realize precipitation forecasting model as well as classifier. The structure of the proposed RBFNNs consists of three modules such as condition, conclusion, and inference phase. The input space of the condition phase is divided by using Fuzzy C-means(FCM) and the local area of the conclusion phase is represented as four types of polynomial functions. The coefficients of connection weights are estimated by weighted least square estimation(WLSE) for modeling as well as least square estimation(LSE) method for classifier. The final output of the inference phase is obtained through fuzzy inference method. The essential parameters of the proposed model and classifier such ad input variable, polynomial order type, the number of rules, and fuzzification coefficient are optimized by means of Particle Swarm Optimization(PSO) and Differential Evolution(DE). The performance of the proposed precipitation forecasting system is evaluated by using KLAPS meteorological data.

LMI Based L2 Robust Stability Analysis and Design of Fuzzy Feedback Linearization Control Systems (LMI를 기반으로 한 퍼지 피드백 선형화 제어 시스템의 L2 강인 안정성 해석)

  • Hyun, Chang-Ho;Park, Chang-Woo;Park, Mignon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.5
    • /
    • pp.582-589
    • /
    • 2003
  • This paper presents the robust stability analysis and design methodology of the fuzzy feedback linearization control systems. Uncertainty and disturbances with known bounds are assumed to be included Un the Takagi-Sugeno (TS) fuzzy models representing the nonlinear plants. $L_2$ robust stability of the closed system is analyzed by casting the systems into the diagonal norm bounded linear differential inclusions (DNLDI) formulation. Based on the linear matrix inequality (LMI) optimization programming, a numerical method for finding the maximum stable ranges of the fuzzy feedback linearization control gains is also proposed. To verify the effectiveness of the proposed scheme, the robust stability analysis and control design examples are given.

An Improved Robust Fuzzy Principal Component Analysis (잡음 민감성이 개선된 퍼지 주성분 분석)

  • Heo, Gyeong-Yong;Woo, Young-Woon;Kim, Seong-Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.5
    • /
    • pp.1093-1102
    • /
    • 2010
  • Principal component analysis (PCA) is a well-known method for dimension reduction while maintaining most of the variation in data. Although PCA has been applied to many areas successfully, it is sensitive to outliers. Several variants of PCA have been proposed to resolve the problem and, among the variants, robust fuzzy PCA (RF-PCA) demonstrated promising results. RF-PCA uses fuzzy memberships to reduce the noise sensitivity. However, there are also problems in RF-PCA and the convergence property is one of them. RF-PCA uses two different objective functions to update memberships and principal components, which is the main reason of the lack of convergence property. The difference between two functions also slows the convergence and deteriorates the solutions of RF-PCA. In this paper, a variant of RF-PCA, called RF-PCA2, is proposed. RF-PCA2 uses an integrated objective function both for memberships and principal components. By using alternating optimization, RF-PCA2 is guaranteed to converge on a local optimum. Furthermore, RF-PCA2 converges faster than RF-PCA and the solutions found are more similar to the desired solutions than those of RF-PCA. Experimental results also support this.

Cable Adjustment of Composite Cable Stayed Bridge with Fuzzy Linear Regression Analysis (선형퍼지회귀분석기법을 이용한 합성형 사장교 케이블의 장력보정)

  • Kwon, Jang Sub;Chang, Seung Pil;Cho, Suh Kyoung
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.4 s.33
    • /
    • pp.579-588
    • /
    • 1997
  • During the construction of cable stayed bridge, errors are always caused by various reasons, accumulated and amplified through the complex construction steps. It is likely that the undesirable stress distribution of members and the large deflection of the bridge different from design values come out The adjustment of cables during construction is absolutely indispensable to correct the stress distribution of the members and the geometrical configuration of the bridge. In the conventional method, weight coefficients are used to consider the difference of units between cable forces and girder deflections during the optimization process of cable adjustment. However, it is not easy to determine weight coefficients and the adjustment must be repeated several times with the time consuming process of the determination of new weight coefficients in case that errors are out of design allowable limits. In this paper, fuzzy linear regression analysis is applied to the cable adjustment to overcome those problems. In the application of fuzzy linear regression analysis method the designer's intention and the design allowable limits can be formulated in the form of the constraints of the linear optimization problem. Therefore, the cable adjustment in construction site can be carried out with the fuzzy linear regression analysis more rapidly than with the convetional method.

  • PDF

Efficiency Optimization Control of SynRM Drive using Multi-AFLC (다중 AFLC를 이용한 SynRM 드라이브의 효율 최적화 제어)

  • Jang, Mi-Geum;Ko, Jae-Sun;Choi, Jung-Sik;Kang, Sung-Jun;Baek, Jeong-Woo;Kim, Soon-Young;Chung, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.10a
    • /
    • pp.359-362
    • /
    • 2009
  • Optimal efficiency control of synchronous reluctance motor(SynRM) is very important in the sense of energy saving and conservation of natural environment because the efficiency of the SynRM is generally lower than that of other types of AC motors. This paper is proposed a novel efficiency optimization control of SynRM considering iron loss using multi adaptive fuzzy learning controller(AFLC). The optimal current ratio between torque current and exciting current is analytically derived to drive SynRM at maximum efficiency. This paper is proposed an efficiency optimization control for the SynRM which minimizes the copper and iron losses. There exists a variety of combinations of d and q-axis current which provide a specific motor torque. The objective of the efficiency optimization control is to seek a combination of d and q-axis current components, which provides minimum losses at a certain operating point in steady state. The control performance of the proposed controller is evaluated by analysis for various operating conditions. Analysis results are presented to show the validity of the proposed algorithm.

  • PDF

Optimization Driven MapReduce Framework for Indexing and Retrieval of Big Data

  • Abdalla, Hemn Barzan;Ahmed, Awder Mohammed;Al Sibahee, Mustafa A.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.5
    • /
    • pp.1886-1908
    • /
    • 2020
  • With the technical advances, the amount of big data is increasing day-by-day such that the traditional software tools face a burden in handling them. Additionally, the presence of the imbalance data in big data is a massive concern to the research industry. In order to assure the effective management of big data and to deal with the imbalanced data, this paper proposes a new indexing algorithm for retrieving big data in the MapReduce framework. In mappers, the data clustering is done based on the Sparse Fuzzy-c-means (Sparse FCM) algorithm. The reducer combines the clusters generated by the mapper and again performs data clustering with the Sparse FCM algorithm. The two-level query matching is performed for determining the requested data. The first level query matching is performed for determining the cluster, and the second level query matching is done for accessing the requested data. The ranking of data is performed using the proposed Monarch chaotic whale optimization algorithm (M-CWOA), which is designed by combining Monarch butterfly optimization (MBO) [22] and chaotic whale optimization algorithm (CWOA) [21]. Here, the Parametric Enabled-Similarity Measure (PESM) is adapted for matching the similarities between two datasets. The proposed M-CWOA outperformed other methods with maximal precision of 0.9237, recall of 0.9371, F1-score of 0.9223, respectively.

Multi-system vehicle formation control based on nearest neighbor trajectory optimization

  • Mingxia, Huang;Yangyong, Liu;Ning, Gao;Tao, Yang
    • Advances in nano research
    • /
    • v.13 no.6
    • /
    • pp.587-597
    • /
    • 2022
  • In the present study, a novel optimization method in formation control of multi -system vehicles based on the trajectory of the nearest neighbor trajectory is presented. In this regard, the state equations of each vehicle and multisystem is derived and the optimization scheme based on minimizing the differences between actual positions and desired positions of the vehicles are conducted. This formation control is a position-based decentralized model. The trajectory of the nearest neighbor are optimized based on the current position and state of the vehicle. This approach aids the whole multi-agent system to be optimized on their trajectory. Furthermore, to overcome the cumulative errors and maintain stability in the network a semi-centralized scheme is designed for the purpose of checking vehicle position to its predefined trajectory. The model is implemented in Matlab software and the results for different initial state and different trajectory definition are presented. In addition, to avoid collision avoidance and maintain the distances between vehicles agents at a predefined desired distances. In this regard, a neural fuzzy network is defined to be utilized in conjunction with the control system to avoid collision between vehicles. The outcome reveals that the model has acceptable stability and accuracy.

Reservoir Operation by Tabu Search Method during Flood (타부탐색기법에 의한 홍수시 저수지 운영에 관한 연구)

  • Jeong, Han-Woo;Choi, Seung-An;Kim, Hung-Soo;Shim, Myung-Phil
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.9 s.158
    • /
    • pp.761-770
    • /
    • 2005
  • This study applied the fuzzy logic control for the construction of the reservoir operation model which can consider uncertainty of the predicted inflow in determining reservoir release during flood period. The control rule is usually constructed based on the opinion of experts which is a general technique. To improve the drawback of general technique, this study constructed the Fuzzy-Tabu search model automatically established by the fuzzy rule using Tabu search which is a global optimization technique. As the results, the peak release is decreased and the flood control efficiency is improved. The total release is also decreased and this represents the benefit in water use. Consequently, it is confirmed that the effect of flood control can be increased through the constructed model. It also shows that the available water resources after the flood is more increased. So, the proposed Fuzzy-Tabu search model could be better than the actual reservoir operation methodology in the aspect of water use.

A Study on Three Phase Partial Discharge Pattern Classification with the Aid of Optimized Polynomial Radial Basis Function Neural Networks (최적화된 pRBF 뉴럴 네트워크에 이용한 삼상 부분방전 패턴분류에 관한 연구)

  • Oh, Sung-Kwun;Kim, Hyun-Ki;Kim, Jung-Tae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.4
    • /
    • pp.544-553
    • /
    • 2013
  • In this paper, we propose the pattern classifier of Radial Basis Function Neural Networks(RBFNNs) for diagnosis of 3-phase partial discharge. Conventional methods map the partial discharge/noise data on 3-PARD map, and decide whether the partial discharge occurs or not from 3-phase or neutral point. However, it is decided based on his own subjective knowledge of skilled experter. In order to solve these problems, the mapping of data as well as the classification of phases are considered by using the general 3-PARD map and PA method, and the identification of phases occurring partial discharge/noise discharge is done. In the sequel, the type of partial discharge occurring on arbitrary random phase is classified and identified by fuzzy clustering-based polynomial Radial Basis Function Neural Networks(RBFNN) classifier. And by identifying the learning rate, momentum coefficient, and fuzzification coefficient of FCM fuzzy clustering with the aid of PSO algorithm, the RBFNN classifier is optimized. The virtual simulated data and the experimental data acquired from practical field are used for performance estimation of 3-phase partial discharge pattern classifier.