• Title/Summary/Keyword: Fuzzy Modeling

Search Result 739, Processing Time 0.031 seconds

A Study on the Knowledge Based Control Algorithm for Performance Improvement of the Automotive Suspension System (현가장치의 성능향상을 위한 지능형 제어로직에 관한 연구)

  • So, S.G.;Byun, G.S.
    • Journal of Power System Engineering
    • /
    • v.5 no.2
    • /
    • pp.87-92
    • /
    • 2001
  • Automotive suspension system is a mechanism for isolation of the vibration coming from the road inputs. Recently, the electronically controlled suspension systems which may improve ride and handling performance have been developed. Here, the continuously controlled semi-active suspension system is focused. As a mechanism to control damping forces continuously, a solenoid valve is used. The modeling for the solenoid valve is introduced briefly, a vehicle dynamics modeling is constructed, and then combined system model is completed. To design the efficient control algorithm for the semiactive suspension system the knowledge based fuzzy logic is applied and the technique how to apply the sky-hook theory to the fuzzy logic is developed. Finally, to confirm the improvement of performance the computer simulation is carried out.

  • PDF

An Approach to Fuzzy Modeling and Control of Nonlinear Systems (비선형 시스템의 퍼지 모델링 및 제어)

  • Lee, Chul-Heui;Ha, Young-Ki;Seo, Seon-Hak
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.425-427
    • /
    • 1997
  • In this paper, a new approach to modeling and control of nonlinear systems using fuzzy theory is presented. To express the various and complex behavior of nonlinear system, we combine multiple model method with hierachical prioritized structure. The mountain clustering technique is used in partitioning of system, and TSK rule structure is adopted to form the fuzzy rules. Also we soften the paradigm of Mamdani's inference mechanism by using Yager's S-OWA operators.

  • PDF

A Multi-Stage 75 K Fuzzy Modeling Method by Genetic Programming

  • Li Bo;Cho Kyu-Kab
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2002.05a
    • /
    • pp.877-884
    • /
    • 2002
  • This paper deals with a multi-stage TSK fuzzy modeling method by using Genetic Programming (GP). Based on the time sequence of sampling data the best structural change points of complex systems are detemined by using GP, and also the moving window is simultaneously introduced to overcome the excessive amount of calculation during the generating procedure of GP tree. Therefore, a multi-stage TSK fuzzy model that attempts to represent a complex problem by decomposing it into multi-stage sub-problems is addressed and its learning algorithm is proposed based on the Radial Basis Function (RBF) network. This approach allows us to determine the model structure and parameters by stages so that the problems ran be simplified.

  • PDF

Fuzzy Logic-based Modeling of a Score (퍼지 이론을 이용한 악보의 모델링)

  • 손세호;권순학
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.3
    • /
    • pp.264-269
    • /
    • 2001
  • In this paper, we interpret a score as a time series and deal with the fuzzy logic-based modeling of it. The musical notes in a score represent a lot of information about the length of a sound and pitches, etc. In this paper, using melodies, tones and pitches in a score, we transform data on a score into a time series. Once more, we foml the new Lime series by sliding a window through the time series. For analyzing the time series data, we make use of the Box-Jenkins s time series analysis. On the basis of the identified characteristics of time series, we construct the fuzzy model.

  • PDF

The Sliding Controller designed by the Indirect Adaptive Fuzzy Control Method (간접 적응 퍼지 제어기법에 의한 슬라이딩 제어기 설계)

  • Choi, Chang-Ho;Yim, Wha-Yeong
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2283-2286
    • /
    • 2000
  • Sliding control is a powerful approach to controlling nonlinear and uncertain systems. Conventional sliding mode control suffer' from high control gain and chattering problem. also it needs mathematic! modeling equations for control systems. A Fuzzy controller is endowed with control rules and membership function that are constructed on the knowledge of expert, as like intuition and experience. but It is very difficult to obtain the exact values which are the membership function and consequent parameters. In this paper, without mathematical modeling equations, the plant parameters in sliding mode are estimated by the indirect adaptive fuzzy method. the proposed algorithm could analyze the system's stability and convergence behavior using Lyapunov theory. so sliding modes are reconstructed and decreased tracking error. moreover convergence time took a short. An example of inverted pendulum is given for demonstration of the robustness of proposed methodology.

  • PDF

A New Method for Color Measurign Using Fuzzy Modeling (퍼지 모델링 기법을 이용한 새로운 칼라 조제 방법)

  • Ryu, Sang-Moon;Han, Il-Suk;Park, Byoung-Jun;Ahn, Tae-Chon
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2395-2397
    • /
    • 2000
  • In this paper, a new method for color measuring is presented using fuzzy modeling technique. The fuzzy and polynomial inferences are used for obtaining RGB characteristic curve. The eight RGB real data from expert dye-stuff manufacturer, are simulated. The results show that the proposed method is more excellent than other methods, in the color measuring process of textile field.

  • PDF

On-line Modeling for Nonlinear Process Systems using the Adaptive Fuzzy-Neural Network (적응 퍼지-뉴럴 네트워크를 이용한 비선형 공정의 On-line 모델링)

  • Park, Chun-Seong;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.537-539
    • /
    • 1998
  • In this paper, we construct the on-line model structure for the nonlinear process systems using the adaptive fuzzy-neural network. Adaptive fuzzy-neural network usually consists of two distinct modifiable structure, with both, the premise and the consequent part. These two parts can be adapted by different optimization methods, which are the hybrid learning procedure combining gradient descent method and least square method. To achieve the on-line model structure, we use the recursive least square method for the consequent parameter identification of nonlinear process. We design the interface between PLC and main computer, and construct the monitoring and control simulator for the nonlinear process. The proposed on-line modeling to real process is carried out to obtain the effective and accurate results.

  • PDF

Double Gate MOSFET Modeling Based on Adaptive Neuro-Fuzzy Inference System for Nanoscale Circuit Simulation

  • Hayati, Mohsen;Seifi, Majid;Rezaei, Abbas
    • ETRI Journal
    • /
    • v.32 no.4
    • /
    • pp.530-539
    • /
    • 2010
  • As the conventional silicon metal-oxide-semiconductor field-effect transistor (MOSFET) approaches its scaling limits, quantum mechanical effects are expected to become more and more important. Accurate quantum transport simulators are required to explore the essential device physics as a design aid. However, because of the complexity of the analysis, it has been necessary to simulate the quantum mechanical model with high speed and accuracy. In this paper, the modeling of double gate MOSFET based on an adaptive neuro-fuzzy inference system (ANFIS) is presented. The ANFIS model reduces the computational time while keeping the accuracy of physics-based models, like non-equilibrium Green's function formalism. Finally, we import the ANFIS model into the circuit simulator software as a subcircuit. The results show that the compact model based on ANFIS is an efficient tool for the simulation of nanoscale circuits.

LDI NN auxiliary modeling and control design for nonlinear systems

  • Chen, Z.Y.;Wang, Ruei-Yuan;Jiang, Rong;Chen, Timothy
    • Smart Structures and Systems
    • /
    • v.29 no.5
    • /
    • pp.693-703
    • /
    • 2022
  • This study investigates an effective approach to stabilize nonlinear systems. To ensure the asymptotic nonlinear stability in nonlinear discrete-time systems, the present study presents controller for an EBA (Evolved Bat Algorithm) NN (fuzzy neural network) in the algorithm. In fuzzy evolved NN modeling, the auxiliary circuit with high frequency LDI (linear differential inclusions) and NN model representation is developed for the nonlinear arbitrary dynamics. An example is utilized to demonstrate the system more robust compared with traditional control systems.

A study on nonlinear data-based modeling using fuzzy neural networks (퍼지신경망을 이용한 비선형 데이터 모델링에 관한 연구)

  • Kwon, Oh-Gook;Jang, Wook;Joo, Young-Hoon;Choi, Yoon-Ho;Park, Jin-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.120-123
    • /
    • 1997
  • This paper presents models of fuzzy inference systems that can be built from a set of input-output training data pairs through hybrid structure-parameter learning. Fuzzy inference systems has the difficulty of parameter learning. Here we develop a coding format to determine a fuzzy neural network(FNN) model by chromosome in a genetic algorithm(GA) and present systematic approach to identify the parameters and structure of FNN. The proposed FNN can automatically identify the fuzzy rules and tune the membership functions by modifying the connection weights of the networks using the GA and the back-propagation learning algorithm. In order to show effectiveness of it we simulate and compare with conventional methods.

  • PDF