• Title/Summary/Keyword: Fuzzy Matrix

Search Result 460, Processing Time 0.034 seconds

Fuzzy Logic Control for a Redundant Manipulator -Resolved Motion Rate Control

  • Kim, Sung-Woo;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.479-484
    • /
    • 1992
  • The resolved motion rate control (RMRC) is converting to Joint space trajectory from given Cartesian space trajectory. The RMRC requires the inverse of Jacobian matrix. Since the Jacobian matrix of the redundant robot is generally not square, the pseudo-inverse must be introduced. However the pseudo-inverse is not easy to be implemented on a digital computer in real time as well as mathematically complex. In this paper, a simple fuzzy resolved motion rate control (FRMRC) that can replace the RMRC using pseudo-inverse of Jacobian is proposed. The proposed FRMRC with appropriate fuzzy rules, membership functions and reasoning method can solve the mapping problem between the spaces without complexity. The mapped Joint space trajectory is sufficiently accurate so that it can be directly used to control redundant manipulators. Simulation results verify the efficiency of the proposed idea.

  • PDF

T-S Fuzzy Model-based Waypoints-Tracking Control of Underwater Vehicles (무인잠수정의 T-S 퍼지 모델기반 경로점 유도제어)

  • Kim, Do-Wan;Lee, Ho-Jae;Sur, Joo-No
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.6
    • /
    • pp.526-530
    • /
    • 2011
  • This paper presents a new fuzzy model-based design approach for waypoints-tracking control of nonlinear underwater vehicles (UUVs) on a horizontal plane. The waypoints-tracking control problem is converted into the stabilization one for the error model between the given nonlinear UUV and the waypoints. By using the sector nonlinearity, the error model is modeled in Takagi-Sugeno's form. We then derive stabilization conditions for the error model in the format of linear matrix inequality. A numerical simulation is provided to illustrate the effectiveness of the proposed methodology.

Blind linear/nonlinear equalization for heavy noise-corrupted channels

  • Han, Soo- Whan;Park, Sung-Dae
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.3
    • /
    • pp.383-391
    • /
    • 2009
  • In this paper, blind equalization using a modified Fuzzy C-Means algorithm with Gaussian Weights (MFCM_GW) is attempted to the heavy noise-corrupted channels. The proposed algorithm can deal with both of linear and nonlinear channels, because it searches for the optimal channel output states of a channel instead of estimating the channel parameters in a direct manner. In contrast to the common Euclidean distance in Fuzzy C-Means (FCM), the use of the Bayesian likelihood fitness function and the Gaussian weighted partition matrix is exploited in its search procedure. The selected channel states by MFCM_GW are always close to the optimal set of a channel even the additive white Gaussian noise (AWGN) is heavily corrupted in it. Simulation studies demonstrate that the performance of the proposed method is relatively superior to existing genetic algorithm (GA) and conventional FCM based methods in terms of accuracy and speed.

Intelligent Digital Redesign for Nonlinear Interconnected Systems using Decentralized Fuzzy Control

  • Koo, Geun-Bum;Park, Jin-Bae;Joo, Young-Hoon
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.3
    • /
    • pp.420-428
    • /
    • 2012
  • In this paper, a novel intelligent digital redesign (IDR) technique is proposed for the nonlinear interconnected systems which can be represented by a Takagi-Sugeno (T-S) fuzzy model. The IDR technique is to convert a pre-designed analog controller into an equivalent digital one. To develop this method, the discretized models of the analog and digital closed-loop system with the decentralized controller are presented, respectively. Using these discretized models, the digital decentralized control gain is obtained to minimize the norm between the state variables of the analog and digital closed-loop systems and stabilize the digital closed-loop system. Its sufficient conditions are derived in terms of linear matrix inequalities (LMIs). Finally, a numerical example is provided to verify the effectiveness of the proposed technique.

Gaussian Weighted CFCM for Blind Equalization of Linear/Nonlinear Channel

  • Han, Soo-Whan
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.14 no.3
    • /
    • pp.169-180
    • /
    • 2013
  • The modification of conditional Fuzzy C-Means (CFCM) with Gaussian weights (CFCM_GW) is accomplished for blind equalization of channels in this paper. The proposed CFCM_GW can deal with both of linear and nonlinear channels, because it searches for the optimal desired states of an unknown channel in a direct manner, which is not dependent on the type of channel structure. In the search procedure of CFCM_GW, the Bayesian likelihood fitness function, the Gaussian weighted partition matrix and the conditional constraint are exploited. Especially, in contrast to the common Euclidean distance in conventional Fuzzy C-Means(FCM), the Gaussian weighted partition matrix and the conditional constraint in the proposed CFCM_GW make it more robust to the heavy noise communication environment. The selected channel states by CFCM_GW are always close to the optimal set of a channel even when the additive white Gaussian noise (AWGN) is heavily corrupted. These given channel states are utilized as the input of the Bayesian equalizer to reconstruct transmitted symbols. The simulation studies demonstrate that the performance of the proposed method is relatively superior to those of the existing conventional FCM based approaches in terms of accuracy and speed.

A New Design Method for T-S Fuzzy Controller with Pole Placement Constraints

  • Joh, Joongseon;Jeung, Eun-Tae;Chung, Won-Jee;Kwon, Sung-Ha
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.3
    • /
    • pp.72-80
    • /
    • 1997
  • A new design method for Takagi-Sugeno (T-S in short) fuzzy controller which guarantees global asymptotic stability and satisfies a desired performance is proposed in this paper. The method uses LMI(Linear Matrix Inequality) approach to find the common symmetric positive definite matrix P and feedback fains K/sub i/, i= 1, 2,..., r, numerically. The LMIs for stability criterion which treats P and K'/sub i/s as matrix variables is derived from Wang et al.'s stability criterion. Wang et al.'s stability criterion is nonlinear MIs since P and K'/sub i/s are coupled together. The desired performance is represented as $ LMIs which place the closed-loop poles of $ local subsystems within the desired region in s-plane. By solving the stability LMIs and pole placement constraint LMIs simultaneously, the feedback gains K'/sub i/s which gurarntee global asymptotic stability and satisfy the desired performance are determined. The design method is verified by designing a T-S fuzzy controller for an inverted pendulum with a cart using the proposed method.

  • PDF

Intelligent Fuzzy Controller for Nonlinear Systems

  • Joo, Young-Hoon;Lee, Sang-Jun;Oh, Jae-Heung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.2
    • /
    • pp.139-145
    • /
    • 2002
  • In this paper, we proposed an intelligent digital redesign method for a class of fuzzy-model-based controllers, effective fur stabilization of continuous-time nonlinear systems. The TS fuzzy model is used to expend the results of the digital redesign technique to nonlinear systems. The proposed method utilized the recently developed LMI technique to obtain a digitally redesigned fuzzy-model-based controller. The intelligent digital redesign problem is converted to equivalent problem, and the LMI method is used to find the digitally redesigned fuzzy-model-based controller. The stabilization conditions of TS fuzzy model are derived for stabilization in the sense of Laypunov stability. In order to demonstrates the effectiveness and feasibility of the proposed controller design methodology, we applied this method to the single link flexible-joint robot arm.

Fuzzy c-Means Clustering Algorithm with Pseudo Mahalanobis Distances

  • ICHIHASHI, Hidetomo;OHUE, Masayuki;MIYOSHI, Tetsuya
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.148-152
    • /
    • 1998
  • Gustafson and Kessel proposed a modified fuzzy c-Means algorithm based of the Mahalanobis distance. Though the algorithm appears more natural through the use of a fuzzy covariance matrix, it needs to calculate determinants and inverses of the c-fuzzy scatter matrices. This paper proposes a fuzzy clustering algorithm using pseudo mahalanobis distance, which is more easy to use and flexible than the Gustafson and Kessel's fuzzy c-Means.

  • PDF

Fuzzy H$\infty$ Filtering for Nonlinear Systems with Time-Varying Delayed States

  • Lee, Kap-Rai;Lee, Jang-Sik;Oh, Do-Chang;Park, Hong-Bae
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.1 no.2
    • /
    • pp.99-105
    • /
    • 1999
  • This paper presents a fuzzy H$\infty$ filtering problem for a class of uncertain nonlinear systems with time-varying delayed states and unknown inital state on the basis of Takagi-Sugeno(T-S) fuzzy model. The nonlinear systems are represented by T-S fuzzy models, and the fuzzy control systems utilize the concept of the so-called parallel distributed compensation. Using a single quadraic Lyapunov function, the stability and L2 gain performance from the noise signals to the estimation error are discussed. Sufficient conditions for the existence of fuzzy H$\infty$ filters are given in terms of linear matrix inequalities (LMIs). The filtering gains can also be directly obtained from the solutions of LMIs.

  • PDF

A Model with an Inference Engine for a Fuzzy Production System Using Fuzzy Petri Nets (Fuzzy Petri Nets를 이용한 퍼지 추론 시스템의 모델링 및 추론기관의 구현)

  • ;Zeung Nam Bien
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.7
    • /
    • pp.30-41
    • /
    • 1992
  • As a general model of rule-based systems, we propose a model for a fuzzy production system having chaining rules and an inference engine associated with the model. The concept of so-called 'fuzzy petri nets' is used to model the fuzzy production system and the inference engine is designed to be capable of handling inexact knowledge. The fuzzy logic is adopted to represent vagueness in the rules and the certainty factor is used to express uncertainty of each rules given by a human expert. Parallel, inference schemes are devised by transforming Fuzzy Petri nets to matrix formula. Futher, the inference engine mechanism under the Mamdani's implication method can be desceribed by a simple algebraic formula, which makes real time inference possible.

  • PDF