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Abstract

The resolved motion rate control (RMRC) is
converting to Joint space trajectory from given
Cartesian space trajectory. The RMRC requires the
inverse of Jacobian matrix. Since the Jacobian
matrix of the redundant robot is generally not
square, the pseudo-inverse must be introduced.
However the pseudo-inverse is not easy to be
implemented on a digital computer in real time as
well as mathematically complex. In this paper, a
simple fuzzy resolved motion rate control (FRMRC)
that can replace the RMRC using pseudo-inverse of
Jacobian is proposed. The proposed FRMRC with
appropriate fuzzy rules, membership functions and
reasoning method can solve the mapping problem
between the spaces without complexity. The
mapped Joint space trajectory is sufficiently
accurate so that it can be directly used to control
redundant manipulators. Simulation results verify
the efficiency of the proposed idea.

1. Introduction

Conventional robot controllers are designed in Joint
space. However the desired trajectory is usually
given in Cartesian space, so it is necessary to
convert between two spaces. This is generally
known as kinematics when Joint space is converted
to Cartesian space and inverse kinematics when
Cartesian space to Joint space. Because of the high
nonlinearity of a robot mechanism, the closed form
solution of kinematics is very complex and highly
coupled and the one of inverse kinematics is much
more complex.

Instead of solving kinematics and inverse
kinematics, conversion between two spaces can be
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done by using the differential relationship, so-
called Jacobian. The Jacobian matrix determines
the relationship between change of linear position
and change of angular position. Using this
property, one can find the current Cartesian
position (or Joint position) by integrating the
change of linear position (or that of angular
pesition). These can be represented mathematically
as follows.

Generally, the kinematic relationship between
Cartesian space and Joint space is given by

x = f(8) M

Their differential relationships are given as
follows:

dx=J(@) de 2)

where J = df /08 e R™™ is the Jacobian matrix.

Computing dx by solving the linear equation of
(2) for given 6 and x is proposed by Whitney(1969)
as the resolved motion rate controlfl]. The block
diagram of robot manipulator control containing the
motion resolver is shown Fig. 1.

(t) dx do

x(t
—

Motion
Resolver

T
Controller —#| Robot

x(©)

x(t) : current position in Cartesian space
xg(t) : desired trajectory

Fig. 1. Robot controller containing
the motion resolver

Conventional robot manipulators have square
Jacobian matrix. Thus the solution of the linear



equation of (2) is given by multiplying the inverse
Jacobian matrix to both side of (2). However the
redundant manipulators have more degree of
freedom than the conventional manipulators, so
their Jacobian is not a square one. Therefore the
pseudo-inverse of J is introduced.

The general solution of (2) using the pseudo-
inverse is obtained as follows.

d6 = J¥(6) dx +[1, - J*(6)J(0)ly ©)

where J#(8)e R™™ is the pseudo-inverse of

J(8), ye R" is an arbitrary vector and I, € R™"
is and identity matrix. If the exact solution does
not exist, (3) covers all least-square solutions that

minimize |dx - J(8)d8|.

Even though the general solution of (2) is given
by (3), finding out the pseudo-inverse of Jacobian
mairix is not easy. It needs much more calculation
than the conventional matrix inverse. Thus the
resolved motion rate control using (3) has
difficulties to implement on a digital computer in
real time. To overcome the above drawbacks, a
simple algorithm is proposed to replace the
pseudo-inverse of the Jacobian matrix. That is, by
solving (2) using the fuzzy logic, one can build
simple and fast resolved motion rate controller.

In this paper, a fuzzy resolved motion rate
controller (FRMRC) which converts Joint space to
Cartesian space is proposed. It will be shown that
conversion between two spaces can be done
without solving inverse kinematics nor pseudo-
inverse of Jacobian matrix. Moreover, by
choosing the fuzzy variables and rules as small as
possible, its structure is simplified. First the
FRMRC for 1-link robot manipulator is derived,
and then extended to multi-link redundant
manipulators hierarchically. Finally the simulation
results will verify the proposed algorithm.

2. Fuzzy Resolved Motion Rate
Controller

The basic structure of fuzzy resolved motion rate
controller (FRMRC) for redundant manipulators is
like that the inverse Jacobian is replaced by the
fuzzy reasoning. In other words, instead of cal-
culating the pseudo-inverse of Jacobian matrix, we
define fuzzy rules, membership functions, fuzzy
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reasoning method, and universe of discourse

[Fig. 2].
dx —» J* b
dx —»
; —=|{ FRMRC —*®#
dx

:::| Fuzzifier }-——[ Inference]—»l Defuzzifier }————» &P

Fuzzy Resolved Motion Rate Controller

Fig. 2. Basic Structure of FRMRC

A. One-link Manipulator

To show how the rules and the membership
functions can be determined, consider 1-link robot
manipulator first [Fig. 3].

Yy
(x, y)

0 X

Fig. 3. 1-link robot manipulator

From the kinematics of the manipulator, the tip
position (x,y) is given by

x =1cos@

y = Isin6 @

The Jacobian matrix is obtained by differentiating
both sides of (4) w.r.t. time :

dx =-Isin8 - do
dy = lcosO -do

So the Jaocibian matrix is J = [-/sin@ | cosO]T.
The problem is to calculate d@ from the given
dx,dy and 6.

®

(dx, -1Isin@) - do
(dy, lcos8)— do
As mentioned before, this solution can be find by

pseudo-inverse of the Jacobian matrix, but in this
paper we solve this problem by fuzzy logic.

©



Consider the case (dx, —/sind)-— d6 and
define fuzzy variables, dx,dg,-/siné as follow.

dx = {N,Z, P}
do = {N,Z, P} @
~Isin® = {N, P}

where N, P and Z denote Negative, Positive,and
Zero, respectively.

The membership functions corresponding the
fuzzy variables are below.

0] o] 1

(a) (b)

(a) Membership functions of dx and d@
(b) Membership functions of J

Fig 4. Membership functions

Now define the fuzzy rules. From the relation-
ships of (5), define 5 rules.
Rule 1 : If -Isin8 is Negative and dx is Negative,
then d@ is Positive.
If -Isin@ is Positive and dx 1is Negative,
then d@ is Negative.
If ~Isin@ is Negative and dx is Positive,
then 46 is Negative.
If —-Isin® is Positive and dx is Positive,
then 46 1is Positive.
If dx is Zero, then df is Zero.

Rule 2 :
Rule 3 :
Rule 4 :
Rule 5 :

The case (dy, {cos8)— d6 can be considered
as the same manner. The corresponding fuzzy

variables, membership functions and fuzzy rules
are defined in analogy with (7).

dy={N,Z,P}
d6 = {N,Z,P} 8)
Icos@ = {N,P}

The two cases are rearranged in unified manner
by defining new variables dr and /. When dealing
the case (dx, —Isin6)— d@, dr and J is replaced
by dx and -Isin@, respectively and when

(dy, Icos8)— dé, dr and J is by dy and /cos9,
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respectively. Table 1 shows the results.

Table 1. Rule Table (5 rules)
J \dr N Z P
N P Z N
P N 4 P

Now, calculating d@ from the above two cases.
That is, d6 can be obtained by concerning the two
cases (dx, -Isin6) —» d9 and (dy, [cos®)— d@
properly. To satisfy these two conditions at the

same time, we consider fuzzy OR logic, i.e.

(dx, -1Isin8) OR (dy, [cos8)— do
There are a lot of candidates of fuzzy OR(x, y)
logic, for example, Zadhe OR = MAX(x, y) and

Lukasiewicz OR = MIN(x+y, 1). In this paper,
we prefer Zadhe OR.

B. Kinematic Redundant Manipulator

Based upon the results of 1-link manipulator,

consider the 3-link redundant robot having
kinematic redundancy.
Yy
(x, y)
¢
/// ,03/»—" -
//0 t =~
4
01
0 X

Fig. 4. 3-DOF redundant manipulator

Let C and S denote cos@ and
tively. From kinematics,

sin@, respec-

x=1C +IC, + Gy

10
y= lSl + lS12 + 15123 ( )
The differential relationships are,
dx = J1d6, + J12d0, + J13d6
11401 + J12a0; + J 13483 an

dy = 121d61 + .122(162 + J23d93

Thus Jacobian matrix, J is



[ Ji2 13
J= (12)
LI T2 I )
where
Ji = =18 = 181, = 18123
Jig = =182 — 18123

Ji3 =181

J21 = lC1 + IC12 + lC123
Jop = 1G5 + 1Cin3
. 23 =1Cs

From (11) dx can be considered as super-
position of J,;d6; and dy can be of J,;d8;, where
i=1,2,3. We can determine d6; by splitting (11)
into 3 sub-parts. First, df, is calculated from (13),
the sub-equation of (11).

dx = Jlld()l

dy = J,;d6,
(dx, J1;) OR (dy, J31) = db,

13

Next,d@, is calculated from (14), the second sub-
equation of (11).
dx' = dx - J”dex = J12d92

dy = dy - Jyd6, = Jyd6,
(dx’, Ji2) OR (dy’, Jp) > db,

(14

Finally,d@; is calculated from (15), the third sub-
equation of (11).
dx" = dx' - J12d92 = Jl3d93

dy” = dy’ - Jpd8, = Jy3dos
(dx”, Ji3) OR (dy”, Jy3) = db;
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By splitting (11) into (13) to (15), we use the
fuzzy rules, membership functions and reasoning
method of 1-link manipulator derived in previous
section without modification.  Generally, even
though the manipulator has n degree-of-freedom,
we can use the same rule table and membership
functions as 1-link manipulator. This algorithm
can be generalized from the first link to the end
link as considering the sub-equations hierarchi-
cally.

« Hierarchical FRMRC algorithm

dx=x4(1)- x(2)
dy = ya(t) - y(t)

Do while l1<k<n ‘
(dx, Jix) OR (dy, Joi) = dby
dx = dx - Jlk X d@k
dy = dy - Jy, x db;

EndDo
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The hierarchical FRMRC is shown in Fig. 5 .

T

Ul FRMRC |—» b
J21—'—> 1
dx’ dy’
v v
Ji g—>
12 FRMRC >
Joo—» 2
dxll dyll
y y

Ji3—

FRMRC —> do,
J23 g

Fig. 5. Hierarchical Fuzzy Resolved
Motion Rate Controller

3. Simulation and Results

As derived previous section, simulate the
proposed algorithm for a planar 3-DOF redundant
manipulator. The link lengths [,/ and /5 are 0.5,
0.5 and 0.4 meters, respectively.

The concerning motion trajectories are linear
like Fig. 6 and circular like Fig. 7. For the linear
motion, the desired Cartesian space trajectory is
given by cubic polynomial.

X(t) = ag+ ayt+ a >+ ast’ (16)
X(O) = Xo X(O) = Xo
x(tg) = X¢ X(tf) = X¢

The FRMRC and the conventional RMRC using
pseudo-inverse of Jacobian matrix are compared.
In Fig. 6 and Fig. 7, the snapshots of the motion of
the manipulator are for the case of FRMRC. The
simulation results show the position errors of x and
y for both FRMRC and RMRC. We see that the
errors are approximately same and both have zero
error at the final goal. In Fig. 7, circular trajectory
of 3-cycle is represented. According to the results,
we see the error does not blow up as the
manipulator tracks cyclic trajectory.



(2) Snapshot of the motion of FRMRC (a) Snapshot of the motion of FRMRC
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Fig. 6. FRMRC and RMRC for linear motion Fig. 7. FRMRC and RMRC for circular motion
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4. Conclusions

In this paper, We have proposed a simple
resolved motion rate control algorithm using fuzzy
logic and fuzzy inference, and have showed that
this can replace the pseudo-inverse of the Jacobian
matrix. The advantages’ of this fuzzy motion
resolving algorithm are summarized below.

e Complexity and computation burdens are
excluded, since it is sufficient to use only 5
rules and 2 (or 3) membership functions for
each fuzzy variable.

« This algorithm can be applied not only a 3-DOF
manipulator but also multi-DOF robots using the
hierarchical FRMRC. Therefore even though
the manipulator has n degree-of-freedom, we
can use the same rule table and membership
functions as 1-link case.

« If the fuzzy reasoning method is realized by
look-up table, then the FRMRC can be
implemented in real time by a digital computer.

The proposed fuzzy motion resolving algorithm
is not more accurate than that of using the pseudo-
inverse, but we can see these two methods have
same order of error. This inaccuracy can be
overwhelmed by the above advantages, simplicity
and rapidness. Further studies are to use the
proposed FRMRC to control redundant robots and
to extend to avoiding obstacles.
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