• Title/Summary/Keyword: Fuzzy Logic Systems

Search Result 1,674, Processing Time 0.034 seconds

The design of a fuzzy logic controller for the pointing loop of the spin-stabilized platform (자전 안정화 플랫트폼 위치제어용 퍼지 논리 제어기 설계)

  • 유인억;이상정
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.112-116
    • /
    • 1992
  • In this paper, a fuzzy logic controller(FLC) is designed for the pointing loop of the spin-stabilized platform. For the fuzzy inference, a fuzzy accelerator board using the Togai InfraLogic software and digital fuzzy processor(DFP110FC) is designed, and a validation of an algorithm for fuzzy logic control is also presented. The pointing loop of the spin-stabilized platform using FLC has better performance of step responses than a proportional controller in case of same loop hain through the software simulation and the experiment of implemented hardware.

  • PDF

Cloud-Type Classification by Two-Layered Fuzzy Logic

  • Kim, Kwang Baek
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.1
    • /
    • pp.67-72
    • /
    • 2013
  • Cloud detection and analysis from satellite images has been a topic of research in many atmospheric and environmental studies; however, it still is a challenging task for many reasons. In this paper, we propose a new method for cloud-type classification using fuzzy logic. Knowing that visible-light images of clouds contain thickness related information, while infrared images haves height-related information, we propose a two-layered fuzzy logic based on the input source to provide us with a relatively clear-cut threshold in classification. Traditional noise-removal methods that use reflection/release characteristics of infrared images often produce false positive cloud areas, such as fog thereby it negatively affecting the classification accuracy. In this study, we used the color information from source images to extract the region of interest while avoiding false positives. The structure of fuzzy inference was also changed, because we utilized three types of source images: visible-light, infrared, and near-infrared images. When a cloud appears in both the visible-light image and the infrared image, the fuzzy membership function has a different form. Therefore we designed two sets of fuzzy inference rules and related classification rules. In our experiment, the proposed method was verified to be efficient and more accurate than the previous fuzzy logic attempt that used infrared image features.

Comparing type-1, interval and general type-2 fuzzy approach for dealing with uncertainties in active control

  • Farzaneh Shahabian Moghaddam;Hashem Shariatmadar
    • Smart Structures and Systems
    • /
    • v.31 no.2
    • /
    • pp.199-212
    • /
    • 2023
  • Nowadays fuzzy logic in control applications is a well-recognized alternative, and this is thanks to its inherent advantages. Generalized type-2 fuzzy sets allow for a third dimension to capture higher order uncertainty and therefore offer a very powerful model for uncertainty handling in real world applications. With the recent advances that allowed the performance of general type-2 fuzzy logic controllers to increase, it is now expected to see the widespread of type-2 fuzzy logic controllers to many challenging applications in particular in problems of structural control, that is the case study in this paper. It should be highlighted that this is the first application of general type-2 fuzzy approach in civil structures. In the following, general type-2 fuzzy logic controller (GT2FLC) will be used for active control of a 9-story nonlinear benchmark building. The design of type-1 and interval type-2 fuzzy logic controllers is also considered for the purpose of comparison with the GT2FLC. The performance of the controller is validated through the computer simulation on MATLAB. It is demonstrated that extra design degrees of freedom achieved by GT2FLC, allow a greater potential to better model and handle the uncertainties involved in the nature of earthquakes and control systems. GT2FLC outperforms successfully a control system that uses T1 and IT2 FLCs.

Incorporation of Fuzzy Theory with Heavyweight Ontology and Its Application on Vague Information Retrieval for Decision Making

  • Bukhari, Ahmad C.;Kim, Yong-Gi
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.3
    • /
    • pp.171-177
    • /
    • 2011
  • The decision making process is based on accurate and timely available information. To obtain precise information from the internet is becoming more difficult due to the continuous increase in vagueness and uncertainty from online information resources. This also poses a problem for blind people who desire the full use from online resources available to other users for decision making in their daily life. Ontology is considered as one of the emerging technology of knowledge representation and information sharing today. Fuzzy logic is a very popular technique of artificial intelligence which deals with imprecision and uncertainty. The classical ontology can deal ideally with crisp data but cannot give sufficient support to handle the imprecise data or information. In this paper, we incorporate fuzzy logic with heavyweight ontology to solve the imprecise information extraction problem from heterogeneous misty sources. Fuzzy ontology consists of fuzzy rules, fuzzy classes and their properties with axioms. We use Fuzzy OWL plug-in of Protege to model the fuzzy ontology. A prototype is developed which is based on OWL-2 (Web Ontology Language-2), PAL (Protege Axiom Language), and fuzzy logic in order to examine the effectiveness of the proposed system.

Design of Simple-Structured Fuzzy Logic Systems for Segway-Type Mobile Robot

  • Yoo, Hyun-Ho;Choi, Byung-Jae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.15 no.4
    • /
    • pp.232-239
    • /
    • 2015
  • Studies on the control of the inverted pendulum type system have been widely reported. This is because it is a typical complex nonlinear system and may be a good model for verifying the performance of a proposed control system. In this paper, we propose the design of some fuzzy logic control (FLC) systems for controlling a Segway-type mobile robot, which is an inverted pendulum type system. We first derive a dynamic model of the Segway-type mobile robot and then analyze it in detail. Next, we propose the design of some FLC systems that have good performance for the control of any nonlinear system. Then, we design two conventional FLC systems for the position and balance control of the Segway-type mobile robot, and we demonstrate their usefulness through simulations. Next, we point out the possibility of simplifying the design process and reducing the computational complexity,, which results from the skew symmetric property of the fuzzy control rule tables. Finally, we design two other FLC systems for position and balance control of the Segway-type mobile robot. These systems have only one input variable in the FLC systems. Furthermore, we observe that they offer similar control performance to that of the conventional two-input FLC systems.

An Application of Fuzzy Logic with Desirability Functions to Multi-response Optimization in the Taguchi Method

  • Kim Seong-Jun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.3
    • /
    • pp.183-188
    • /
    • 2005
  • Although it is widely used to find an optimum setting of manufacturing process parameters in a variety of engineering fields, the Taguchi method has a difficulty in dealing with multi-response situations in which several response variables should be considered at the same time. For example, electrode wear, surface roughness, and material removal rate are important process response variables in an electrical discharge machining (EDM) process. A simultaneous optimization should be accomplished. Many researches from various disciplines have been conducted for such multi-response optimizations. One of them is a fuzzy logic approach presented by Lin et al. [1]. They showed that two response characteristics are converted into a single performance index based upon fuzzy logic. However, it is pointed out that information regarding relative importance of response variables is not considered in that method. In order to overcome this problem, a desirability function can be adopted, which frequently appears in the statistical literature. In this paper, we propose a novel approach for the multi-response optimization by incorporating fuzzy logic into desirability function. The present method is illustrated by an EDM data of Lin and Lin [2].

Neuro-Fuzzy Systems: Theory and Applications

  • Lee, C.S. George
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.29.1-29
    • /
    • 2001
  • Neuro-fuzzy systems are multi-layered connectionist networks that realize the elements and functions of traditional fuzzy logic control/decision systems. A trained neuro-fuzzy system is isomorphic to a fuzzy logic system, and fuzzy IF-THEN rule knowledge can be explicitly extracted from the network. This talk presents a brief introduction to self-adaptive neuro-fuzzy systems and addresses some recent research results and applications. Most of the existing neuro-fuzzy systems exhibit several major drawbacks that lead to performance degradation. These drawbacks are the curse of dimensionality (i.e., fuzzy rule explosion), inability to re-structure their internal nodes in a changing environment, and their lack of ability to extract knowledge from a given set of training data. This talk focuses on our investigation of network architectures, self-adaptation algorithms, and efficient learning algorithms that will enable existing neuro-fuzzy systems to self-adapt themselves in an unstructured and uncertain environment.

  • PDF

A New Approach to Adaptive Damping Control for Statistic VAR Compensators Based on Fuzzy Logic

  • Sedaghati, Alireza
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.825-829
    • /
    • 2005
  • This paper presents an approach for designing a fuzzy logic-based adaptive SVC damping In controller for damping low frequency power oscillations. Power systems are often subject to low Frequency electro-mechanical oscillations resulting from electrical disturbances. Generally, power system stabilizers are designed to provide damping against this kind of oscillations. Another means to achieve damping is to design supplementary damping controllers that are equipped with SVC. Various approaches are available for designing such controllers, many of which are based on the concepts of damping torque and others which treat the damping controller design as a generic control problem and apply various control theories on it. In our proposed approach, linear optimal controllers are designed and then a fuzzy logic tuning mechanism is constructed to generate a single control signal. The controller uses the system operating condition and a fuzzy logic signal tuner to blend the control signals generated by two linear controllers, which are designed using an optimal control method. First, we design damping controllers for the two extreme conditions; the control action for intermediate conditions is determined by the fuzzy logic tuner. The more the operating condition belongs to one of the two fuzzy sets, the stronger the contribution of the control signal from that set in the output signal. Simulation studies done on a one-machine infinite-bus and a four-machine two-area test system, show that the proposed fuzzy adaptive damping SVC controller effectively enhances the damping of low frequency oscillations.

  • PDF

Gain Scheduled Fuzzy Control on Aircraft Flight Control (게인 스케줄링 퍼지제어의 비행제어에 대한 적용)

  • 홍성경;심규홍;박성수
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.2
    • /
    • pp.125-130
    • /
    • 2004
  • This paper describes an approach for synthesizing a Fuzzy Logic Controller(FLC) that combines the benefits of fuzzy logic control and fuzzy logic gain scheduling for the F/A-18 aircraft. Specially, fuzzy rules are utilized on-line to determine the denoralization factor(Κ) of a feedback fuzzy controller based on the dynamic pressure(Q) indicateing the region of the flight envelop the aircraft is operating in. Simulation results demonstrate that the proposed FLC provides excellent compensation for time-varying and/or nonlinear characteristics of the aircraft, and that it also exhibits satisfactory robustness with noisy air data sensors.

Experimental Studies of Swing Up and Balancing Control of an Inverted Pendulum System Using Intelligent Algorithms Aimed at Advanced Control Education

  • Ahn, Jaekook;Jung, Seul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.3
    • /
    • pp.200-208
    • /
    • 2014
  • This paper presents the control of an inverted pendulum system using intelligent algorithms, such as fuzzy logic and neural networks, for advanced control education. The swing up balancing control of the inverted pendulum system was performed using fuzzy logic. Because the switching time from swing to standing motion is important for successful balancing, the fuzzy control method was employed to regulate the energy associated with the angular velocity required for the pendulum to be in an upright position. When the inverted pendulum arrived within a range of angles found experimentally, the control was switched from fuzzy to proportional-integral-derivative control to balance the inverted pendulum. When the pendulum was balancing, a joystick was used to command the desired position for the pendulum to follow. Experimental results demonstrated the performance of the two intelligent control methods.