• 제목/요약/키워드: Fuzzy Logic System

검색결과 1,664건 처리시간 0.037초

Implementation of Fuzzy Logic Control for Air Conditioning Systems

  • Mongkolwongrojn, M.;Sarawit, V.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1264-1267
    • /
    • 2005
  • Fuzzy logic control has been widely applied for handling the system which has uncertainty or high robust system. Since the dynamic behaviors of the systems contain complexity and uncertainty in its parameters, several fuzzy logic controllers have been implemented to control room temperature in the field of air conditioning system. In this paper, the fuzzy logic control has been developed to control both in door temperature and humidity in the air conditioning systems. The manipulating variables are speed of compressor, heater and supply air flow rate. The microcomputer was used to interface with in system. The experimental results show the superior of multivaiable fuzzy logic control to keep room temperature and humidity in air conditioning system for the best comfortable.

  • PDF

ON THE STRUCTURE AND LEARNING OF NEURAL-NETWORK-BASED FUZZY LOGIC CONTROL SYSTEMS

  • C.T. Lin;Lee, C.S. George
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1993년도 Fifth International Fuzzy Systems Association World Congress 93
    • /
    • pp.993-996
    • /
    • 1993
  • This paper addresses the structure and its associated learning algorithms of a feedforward multi-layered connectionist network, which has distributed learning abilities, for realizing the basic elements and functions of a traditional fuzzy logic controller. The proposed neural-network-based fuzzy logic control system (NN-FLCS) can be contrasted with the traditional fuzzy logic control system in their network structure and learning ability. An on-line supervised structure/parameter learning algorithm dynamic learning algorithm can find proper fuzzy logic rules, membership functions, and the size of output fuzzy partitions simultaneously. Next, a Reinforcement Neural-Network-Based Fuzzy Logic Control System (RNN-FLCS) is proposed which consists of two closely integrated Neural-Network-Based Fuzzy Logic Controllers (NN-FLCS) for solving various reinforcement learning problems in fuzzy logic systems. One NN-FLC functions as a fuzzy predictor and the other as a fuzzy controller. As ociated with the proposed RNN-FLCS is the reinforcement structure/parameter learning algorithm which dynamically determines the proper network size, connections, and parameters of the RNN-FLCS through an external reinforcement signal. Furthermore, learning can proceed even in the period without any external reinforcement feedback.

  • PDF

Performance Improvement of Backpropagation Algorithm by Automatic Tuning of Learning Rate using Fuzzy Logic System

  • Jung, Kyung-Kwon;Lim, Joong-Kyu;Chung, Sung-Boo;Eom, Ki-Hwan
    • Journal of information and communication convergence engineering
    • /
    • 제1권3호
    • /
    • pp.157-162
    • /
    • 2003
  • We propose a learning method for improving the performance of the backpropagation algorithm. The proposed method is using a fuzzy logic system for automatic tuning of the learning rate of each weight. Instead of choosing a fixed learning rate, the fuzzy logic system is used to dynamically adjust the learning rate. The inputs of fuzzy logic system are delta and delta bar, and the output of fuzzy logic system is the learning rate. In order to verify the effectiveness of the proposed method, we performed simulations on the XOR problem, character classification, and function approximation. The results show that the proposed method considerably improves the performance compared to the general backpropagation, the backpropagation with momentum, and the Jacobs'delta-bar-delta algorithm.

PLL과 fuzzy논리를 이용한 전기자동차 구도용 유도전동기의 속도제어 (Speed control of induction motor for electric vehicles using PLL and fuzzy logic)

  • 양형렬;위석오;임영철;박종건
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.640-643
    • /
    • 1997
  • This paper describes speed controller of a induction motor for electric vehicles using PLL and Fuzzy logic. The proposed system is combined precise speed control of PLL and robust, fast speed control of Fuzzy logic. The motor speed is adaptively incremented or decremented toward the PLL locking range by the Fuzzy logic using information of sampled speed errors and then is maintained accurately by PLL. The results of experiment show excellence of proposed system and that the proposed system is appropriates to control the speed of induction motor for electric vehicles.

  • PDF

퍼지 시스템의 2계층 퍼지 시스템으로의 변환 방법 (A method of converting fuzzy system into 2 layered hierarchical fuzzy system)

  • 주문갑
    • 한국지능시스템학회논문지
    • /
    • 제16권3호
    • /
    • pp.303-308
    • /
    • 2006
  • 본 논문에서는 다입력 퍼지 로직 시스템에서 생기는 퍼지 규칙수의 기하급수적 증가를 막기 위하여, 주어진 퍼지 시스템의 THEN 부분을 이용하여 퍼지 규칙 벡터를 정의하고, 이를 이용하는 2계층의 계층 퍼지 시스템으로 변환하는 방법을 제시한다. 여기에서, 1번째 계층에서는 주어진 퍼지 시스템으로부터 생성되는 일차독립의 퍼지 규칙 벡터를 사용하고, 2계층에서는 1계층에서 사용된 퍼지 규칙 벡터들의 선형 합을 사용한다. 변환된 2계층의 퍼지 시스템은 주어진 퍼지 시스템과 동일한 근사 능력을 가질 뿐 아니라, 더 적은 수의 퍼지 규칙을 가짐을 보인다.

유전 알고리듬과 퍼지논리 시스템을 이용한 비선형 시스템의 피드백 선형화 제어 (Feedback linearization control of a nonlinear system using genetic algorithms and fuzzy logic system)

  • 최영길;김성현;심귀보;전홍태
    • 전자공학회논문지S
    • /
    • 제34S권3호
    • /
    • pp.46-54
    • /
    • 1997
  • In this paper, we psropose the feedback linearization technique for a nonlinear system using genetic algorithms (GAs) and fuzzy logic system. The proposed control scheme approximates the nonlinear term of a nonlinear system using the fuzzy logic system and computes the control input for cancelling the nonlinear term. Then in the fuzzy logic system, the number and shape of membership function of the premise aprt will be tuned to minimize the control error boundary using GAs. And the parameters of the consequence of fuzzy rule will be tuned by the adaptive laws based on lyapunov stability theory in order to guarantee the closed loop stability of control system. The evolution of fuzzy logic system is processed during the on-line adaptive control. The effectiveness of proposed method will be demonstrated by computer simulation of simple nonlinear sytem.

  • PDF

DESIGN AND DEVELOPMENT OF AN OPTIMAL INTELLIGENT FUZZY LOGIC CONTROLLER FOR LASER TRACKING SYSTEM

  • Lu, Jia;Cannady, James
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.2258-2263
    • /
    • 2003
  • This paper presents the design and development of an optimal fuzzy logic controller (FLC) for a laser tracking system. An optimal intelligent fuzzy logic controller was founded on integral criterion of the fuzzy models and three-dimensional fuzzy control. Research had been also concentrated on the methods for multivariable fuzzy models for the purposes of real-time process. Simulation results have shown remarkable tracking performance of this fuzzy PID controller.

  • PDF

Design of Fuzzy Logic Controller for Robot Manipulators in the VSS Control Scheme

  • Yi, Soo-Yeong;Chung, Myung-Jin
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1993년도 Fifth International Fuzzy Systems Association World Congress 93
    • /
    • pp.1207-1210
    • /
    • 1993
  • There is an opinion of regarding a simple fuzzy logic controller as a kind of Variable Structure Controller in recent years. The opinion may provide an analytical basis which describes the robustness to uncertainty and the stability of a fuzzy logic controller. So in this paper, a fuzzy logic controller based on the Variable Structure System with is designed for a robot manipulator which is a class of complex, nonlinear system with uncertainty. Fuzzy control rules, membership shape of the I/O variables of the fuzzy logic controller are designed for guaranteeing the stability of an overall control system. From a computer simulation of dynamic control of a two link robot manipulator, the design procedure of the fuzzy logic controller is validated.

  • PDF

직류 서보계의 퍼지제어와 $\alpha$-레벨 퍼지집합 분해에 의한 퍼지추론 연산회로 구현 (Fuzzy Control of DC Servo System and Implemented Logic Circuits of Fuzzy Inference Engine Using Decomposition of $\alpha$-level Fuzzy Set)

  • 홍정표;홍순일;이요섭
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권5호
    • /
    • pp.793-800
    • /
    • 2004
  • The purpose of this study is to develope a servo system with faster and more accurate response. This paper describes a method of approximate reasoning for fuzzy control of servo system based on the decomposition of $\alpha$-level fuzzy sets. We propose that fuzzy logic algorithm is a body from fuzzy inference to defuzzificaion cases where the output variable u directly is generated PWM The effectiveness for robust and faster response of the fuzzy control scheme are verified for a variable parameter by comparison with a PID control and fuzzy control A position control of DC servo system with a fuzzy logic controller is demonstrated successfully.

HCBKA를 이용한 Interval Type-2 퍼지 논리시스템 기반 예측 시스템 설계 (Prediction System Design based on An Interval Type-2 Fuzzy Logic System using HCBKA)

  • 방영근;이철희
    • 산업기술연구
    • /
    • 제30권A호
    • /
    • pp.111-117
    • /
    • 2010
  • To improve the performance of the prediction system, the system should reflect well the uncertainty of nonlinear data. Thus, this paper presents multiple prediction systems based on Type-2 fuzzy sets. To construct each prediction system, an Interval Type-2 TSK Fuzzy Logic System and difference data were used, because, in general, it has been known that the Type-2 Fuzzy Logic System can deal with the uncertainty of nonlinear data better than the Type-1 Fuzzy Logic System, and the difference data can provide more steady information than that of original data. Also, to improve each rule base of the fuzzy prediction systems, the HCBKA (Hierarchical Correlation Based K-means clustering Algorithm) was applied because it can consider correlationship and statistical characteristics between data at a time. Subsequently, to alleviate complexity of the proposed prediction system, a system selection method was used. Finally, this paper analyzed and compared the performances between the Type-1 prediction system and the Interval Type-2 prediction system using simulations of three typical time series examples.

  • PDF