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 ABSTRACT 
   This paper presents the design and 
development of an optimal fuzzy logic controller 
(FLC) for a laser tracking system. An optimal 
intelligent fuzzy logic controller was founded on 
integral criterion of the fuzzy models and 
three-dimensional fuzzy control. Research had 
been also concentrated on the methods for 
multivariable fuzzy models for the purposes of 
real-time process. Simulation results have shown 
remarkable tracking performance of this fuzzy 
PID controller.  

1.0  INTRODUCTION 
  There have been numerous conventional 
approaches in the literature to the control of 
various laser tracking systems, including robust 
control methods [1]. However, despite the 
significant improvement of the fuzzy PID 
controller, it is noted that these fuzzy PID 
controllers do not meet specific optimality criteria 
for a laser tracking system [2]. The constant 
control gains of these controllers are tuned 
manually, so generally they do not achieve their 
best possible performance due to the lack of 
optimization [3]. As we know, a two-dimensional 
fuzzy controller has its advantages in various 
applications, but for the tracking system the 
number of parameter increases would cause 
dominant problems for the search precision. 
Therefore, it is reasonable to consider that a 
three-dimensional fuzzy controller could be 
provided an optimal structure for a nonlinear 
fuzzy PID controller [4]. The parameters of a 
three-dimensional fuzzy controller with fuzzy 
models may well represent a solution for the  

 
 
design of an optimal fuzzy logic controller.  
In this paper, we concentrated on the methods for 
multivariable fuzzy models in three-dimensional 
fuzzy controller for the laser tracking system. 
2.0 DESIGN OF FUZZY CONTROL SYSTEM 
  There was a general procedure for the research 
that we used to design a fuzzy control system 
(Figure 1).  
 

 
First, we had to identify the process input and 
output variables that needed to be considered. 
Thus, we had to have a good knowledge on the 
system to be controlled. To determine input and 
output variables, we also set the variables 
according to the system requirements.  Next, we 
needed to determine on the number of fuzzy 
partitions for the input and output linguistic 
variables. The number of fuzzy partitions of the 
input-output spaces needed to be large enough to 
provide an adequate approximation and small 
enough to save memory space. This number had 
an essential effect on how fine a control could be 
obtained. In the third step, the research had to 
choose the membership functions for the input 
and output fuzzy variables, and to assign fuzzy 



sets to variables, and then define membership 
functions. To establish the fuzzy logic controller, 
it was necessary to interpret control rules that 
generated the output values corresponding to the 
input signal.  
  A good alternative of the fuzzy PID controller 
was to use a three-dimensional table (lookup table) 
to establish a fuzzy PD controller, and to add the 
integral part to the control path without 
fuzzification. It looked at the current value of the 
error, the integral of the error over a recent time 
interval, and the current derivative of the error 
signal to determine the correction in Figure 2.  
 

 

Nonlinearities that existed in the laser tracking 
system included transfer function of the quadrant 
detector, plant model, and dead-zone. For some 
applications, an accurate and fine control was 
needed to achieve the objectives of high tracking 
speed and small steady-state error. The following 
diagram of the fuzzy logic controller was used in 
the control system in Figure 3.  

 
 

The lookup table was derived from the 
membership function and control rules in the 
actual laser tracking system. Different tunings 
may be needed to obtain the optimal lookup table 
based on the laser tracking system. 
3.0  OPTIMAL FLC DESIGN 
3.1  Nonlinear Three-Dimensional FLC 
  The three-dimensional fuzzy logic controller 
was composed of fuzzification, knowledge based 
rule, and defuzzification. A fuzzy logic distinctive 
feature was the use of a linguistic variable instead 
of the numerical variables. These were defined as 
sentences in a nature language and can be 
represented by fuzzy sets. The fuzzy logic 
controller had three basic steps to process: 
fuzzification, control rule evaluation and 
defuzzification in Figure 4. 

 
The control variables were divided into a set of 
fuzzy sets, which were given nature names: big 
positive (BP), medium positive (MP), small 
positive (SP), zero (Z), small negative (SN), 
medium negative (MN) and big negative (BN). 
We supposed that all variables were selected 
within the closed interval [SN, BP]. Each of these 
fuzzy sets had two members.  The linear 
fuzzification algorithm was for output with fuzzy 
set five members. We started to use a triangular 
shape function to express the knowledge-based 
rule in following equations: 



where e, r, and p were denoted as error, change in 
error and control process output in a 
three-dimensional fuzzy control system. T denotes 
sampling time. These fuzzy sets were calculated 
during the fuzzification process. Assuming a 
resolution of 13 points in each universe, the table 
held 2197 elements. It would be a tremendous 
task to fill these in manually, but it is manageable 
with control rules. A three-dimensional table can 
be represented using relational representation. The 
table can be rearranged into three columns for 
each of the three inputs (e1, e2, e3), (r1, r2, r3) and 
one for the output (p). Each input took five values, 
and the lookup table corresponded to the output 
value.  
  In the fuzzification step, two inputs were 
employed: the error signal e and change in error 
signal ∆e, and the control output p as the input to 
the process being controlled. The inputs to the 
fuzzy PID controller have to be fuzzified before 
being fed into the controller. The membership 
functions for the two inputs and the output had 
similar shape but different peak values and 
standard deviation. These values of constant were 
chosen according to the range of values received 
in the tracking system. The control signal for 
fuzzy PID was easily computed by combining its 
P and D coefficients. This can be converted into 
fuzzy rules. The fuzzy rules were applied to each 
joint of the tracking system. The fuzzy 
proportional controller has a different set of rules 
applied to each joint. This was derived from the 
performance of the tracking system. 
3.2   Fuzzy Controller Models 
  Fuzzy models had excellent capabilities to use 
in a given system. A fuzzy model of a non-linear 
system consists of a set of implication rules, 

which were used to express control statements. 
We used an input system with m inputs (x1, x2, …, 
xm) and a single output y. In principle, the fuzzy 
model of such a system consists of a rule base 
with n fuzzy implication rules. The i-th rule Ri (i = 
1, 2, … , n) had the following general equation. 
Ri: if f(x1 is Ai

1, x2 is Ai
2, …, xm is Ai

m) then yi = 
gi(x1, x2, … , xm)        
where yi inferred a variable of the consequence of 
the i-th rule. The final output y of the system is a 
combination of all yi (i= 1, 2, … , n).  f is a 
connective function that joins the propositions in 
the premise, and gi is the function that implies yi 
when the x1, x2, …, xm satisfies the promise.  
   If f is the “and” connective function and gi is 
a linear function of the form ai

0 + ai
1x1+…+ ai

mxm 
the i-th fuzzy implication rule became: 
Ri: if x1 is Ai

1 and x2 was Ai
2 and … xm is Ai

m then 
yi = ai

0 + ai
1x1 + …+ ai

mxm 
The truth-value of the conjunction between 
propositions in the premise was estimated by the 
minimum of their membership values. That is, the 
truth value of (x is A and y is B) was estimated as 
min(A(x), B(y)), where A(x) and B(y) was the 
membership values. Assume some input variables 
and some initial premise parameters. Consequent 
parameters were optimally adjusted with respect 
to the premise parameters and then the premise 
parameters were readjusted. This was 
accomplished by a complex algorithm, which was 
based on a non-linear optimization method. The 
optimal fuzzy model was achieved by using a set 
of sample data (input and output). The parameter 
identification was concerned with the 
determination of the fuzzy set for the reference 
signal. This was done by dividing the input space 
of each variable into fuzzy subspaces, provided 
that variables were chosen. The reference signal 
was included to get better response for big 
changes in the reference signal. For the plant in 
Figure 5, the controller first requires model 
identification. The number of the linear models 
needed depends on behavior of the nonlinearity of 
the plant.  



The modeling was performed collecting input and 
output data from the simulation and using some 
parameter estimation algorithm. During the 
simulation, the data value of the plant output was 
selected as the operating point of the model. The 
parameters of the fuzzy PID controller were 
determined based on the models. If strong 
nonlinearities occurred in the control parameters, 
more models were estimated where required to 
obtain more accurate approximation of the 
controller parameters with the fuzzy logic.  
  The plant output had the same number of 
fuzzy sets as the number of the models. The 
points of parameters in the models were estimated. 
The fuzzy sets and the membership functions of 
the reference signal were identified with the plant 
output. The plant was stable, but its dynamics 
change dramatically over the operation range, 
which can be easily seen from the open loop step 
responses. The optimal fuzzy PID could be 
computed from the linearized model. The model 
parameters had been estimated from input and 
output data with sampling interval.  
3.3 Optimal Fuzzy Logic Controller for Laser 
Tracking System 
    Figure 6 was based on the error derived 
from the difference between the desired input and 
the actual measured output fed back for PID 
control loop.  

 
  Therefore, the equation for the activation u is 
given by equation. u(t) = Kpe(t) + Ki ∫e(t)dt + Kd 
de/dt where e(t) is the error input to the PID 
controller. When Kd was zero, there were two gain 
parameters to set Kp and Ki.  The proportional 
gain Kp was usually set first with Ki = 0, then Ki 
was increased to achieve good steady-state 
response. Setting the PI controller aside for the 
research, we needed to design the fuzzy part of 
the system. We assigned error and change in error 
as the variables to meet the name that the PD 
controller indicated. The error was pointed out as 
the digital signal that converted from the analog 
output, which represented the offset of the laser 
spot from the control point. This error signal also 
represented the displacement in the mirror by the 
target moving in the target. Error change equals 
the previous error minus the error from the last 
sampling. It was supposed that the error is “zero” 
in an imprecise way. Then the error had a 
membership value given by the functional value 
shown below in Figure 7. 

 
If the error was zero and the change in error was 
small positive, then the control input was small 
negative. If the error was small positive and the 
error change was small positive, then the control 
input was small medium positive. Thus, if the error 
was actually 0.1, its membership in Z would be 0.5, 
and the value of the triangular function was at that 
point. We collected all the IF-THEN rules together 
and formed a decision table (lookup table) for the 
fuzzy controller that was much more concise and 
easier to manipulate. Continuing with the research, 
the linguistic values of the error were taken to be 



negative (N), zero (Z) and positive (P) with the 
following membership functions in Figure 8. 

 

We constructed different rules, corresponding to 
the possible combination of the error and the error 
derivative. The fuzzy set, or membership 
functions, and control rule were combined 
together to form the lookup table, and the 
outcome of the step was a fuzzy variable. From 
the research, the method was used to obtain the 
lookup table. The method was to use the input 
error and change in error, combined with the 
membership function, to calculate the output in 
real time. This method was accurate and smooth 
for the control output. 
4.0  Simulation 
    In the simulation results, we presented the 
effectiveness and special features of the proposed 
control method using the fuzzy PID controller. 
Plots of the system output with the optimal PID 
gains that achieved the best results by error and 
change in error where P = Kp, I = Ki, D = Kd, and 
Kupd and Kui were fuzzy gains. The parameters for 
the fuzzy PID controller gains were found such 
that there were only very little overshot, no 
oscillations, and a good tracking performance 
with respect to the given set point. With the speed 
of 760 r/min, the fuzzy PID controller kept the 
speed of the motor within a ± 1.2% band of the set 
point. The results were shown and the significant 
feature of tracking performance was much better 
because of the smaller overshot and smaller 
rise-time. As the speed decreased, there was an 
increasing non-linear loading effect and the 
performance of the controller went down. The 
number of the membership function was tested in 
models by using three membership functions per 
variable. It was found that with these fuzzy 

models, two variable models also better on the 
checking data. 
  The input values were normalized by dividing 
the set point for the controllers. The error and 
change in error value were between the intervals 
[0, 0.015]. The system automatically generated 
the input variables, their linguistic types, initial 
rule base and the output variable. The value may 
be used as a way for structural learning of the 
fuzzy model. Using the value we could limit the 
size of the rule base. Fuzzy clustering was to 
identify natural groupings of data from a large 
data. Each data point may partially belong to more 
than one cluster with a degree specified by a 
membership function in Figure 9.  

 
The cluster center locations and iteratively 
updates the cluster centers and the membership 
functions for each data point based on minimizing 
a cost function. Two input variable models and 
five membership functions per variable turned out 
the lowest error, about 0.017 for the checking data. 
However, the differences between the outputs 
were not very large. We analytically derived the 
structure of the fuzzy controller modes and related 
the resulting structure to nonlinear PI control as 
well as gained scheduling control. We analyzed 
the characteristics of the gains. Based on the 
derived models structure, we analyzed the 
performance stability of the optimal fuzzy control 
systems using the fuzzy models theorem. In order 
to visualize error and change in error, we provided 
three-dimensional plots of Kp(e, r) in three 
different typical settings. It could handle inputs 
and an output. However, the size of the fuzzy 
table was grown exponentially with each input 



added. The maximum and minimum of Kp(e, r) 
was 8 and 5, respectively. This demonstrated that 
we could obtain different characteristics of the 
gain variation by using different parameter values. 
According to the derived fuzzy model structure, 
as well as the explicit expression of the gain 
variation, the optimal fuzzy controllers were 
closely related to the concept of gain scheduling. 
A three-dimensional fuzzy controller, using three 
six bits input (6x6x6) and (2x2x2) fuzzy lookup 
tables, were used each having 216 and 8 values, 
respectively. The system used three inputs, the 
upper three bits of each input were used for 
addressing the exact position of the nearest data 
point in the lookup table, and the rest of the input 
was the information about the membership 
function. The required point was obtained using 
32 points, 10 in each dimension. These points 
were used to calculate one point for each 
dimension to find out the required point. Using 
this method there was a lot of reduction in error 
and change in error, which reduced computational 
complexities and made the system precision of the 
tracking performance in Figure 10. 

 

Figure 10 showed that the tracking performance 
had smaller errors during the simulation. The 
fuzzy model scheme had been tested thoroughly 
on different conditions, and satisfied results were 
obtained. Although a rule for choosing the fuzzy 
model range for Kp and Kd was obtained by the 
simulation, it was still possible to make further 
performance improvement by fine tuning the 

ranges, as well as by modifying the tuning rules. 
In the Figure 10, the responses were at time t= 
100 using the optimized PID values, whereas at 
time t = 25 for starting values. The method was 
also a more scientific and logical approach to a 
difficult problem of tuning the PID controller. The 
obtained values could be directly to the results of 
the responses of the tracking system. 
5.0 Conclusion 
  All the simulation results indicated that the 
optimal fuzzy logic controller was superior to the 
fuzzy PID controller for the tracking system. 
Nevertheless, based on the satisfactory 
performance of the optimal fuzzy PID controller, 
we believe that the optimal fuzzy PID controller is 
suitable and potential for the control of nonlinear 
plants in various industrial applications. 
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