• Title/Summary/Keyword: Fuzzy Inference system

Search Result 942, Processing Time 0.023 seconds

Fast Fuzzy Inference Algorithm for Fuzzy System constructed with Triangular Membership Functions (삼각형 소속함수로 구성된 퍼지시스템의 고속 퍼지추론 알고리즘)

  • Yoo, Byung-Kook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.1
    • /
    • pp.7-13
    • /
    • 2002
  • Almost applications using fuzzy theory are based on the fuzzy inference. However fuzzy inference needs much time in calculation process for the fuzzy system with many input variables or many fuzzy labels defined on each variable. Inference time is dependent on the number of arithmetic Product in computation Process. Especially, the inference time is a primary constraint to fuzzy control applications using microprocessor or PC-based controller. In this paper, a simple fast fuzzy inference algorithm(FFIA), without loss of information, was proposed to reduce the inference time based on the fuzzy system with triangular membership functions in antecedent part of fuzzy rule. The proposed algorithm was induced by using partition of input state space and simple geometrical analysis. By using this scheme, we can take the same effect of the fuzzy rule reduction.

Fusion of Genetic Algorithms and Fuzzy Inference System (유전 알고리즘과퍼지 푸론 시스템의 합성)

  • 황희수;오성권;우광방
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.9
    • /
    • pp.1095-1103
    • /
    • 1992
  • An approach to fuse the fuzzy inference system which is able to deal with imprecise and uncertain information and genetic algorithms which display the excellent robustness in complex optimization problems is presented in this paper. In order to combine genetic algorithms and fuzzy inference engine effectively the new reasoning method is suggested. The efficient identification method of fuzzy rules is proposed through the adjustment of search areas of genetic algorithms. The feasibilty of the proposed approach is evaluated through simulation.

  • PDF

A Strategy of Selecting Critical Items for Reliability Tests Using Fuzzy Inference (퍼지추론을 이용한 신뢰성 시험 대상 품목 선정 전략)

  • Son, Young-Beom;Yang, Jung-Min
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.13 no.4
    • /
    • pp.205-214
    • /
    • 2018
  • The reliability test is a crucial step for ensuring robustness of high-cost and complex weapon systems. In this paper, we present a set of quantitative criteria to select critical parts or components in weapon systems for the reliability test, and implement a fuzzy inference system by applying developed criteria to fuzzy theory. We classify the selection criteria of critical parts or components into four fuzzy sets and membership functions. A fuzzy inference rule is proposed based on the AHP (Analytic Hierarchy Process) analysis technique so as to derive a convincing reliability test. The credibility of the fuzzy inference system is confirmed through a case study using actual equipment data exacted from an existent weapon system.

MIMO Fuzzy Reasoning Method using Learning Ability (학습기능을 사용한 MIMO 퍼지추론 방식)

  • Park, Jin-Hyun;Lee, Tae-Hwan;Choi, Young-Kiu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.175-178
    • /
    • 2008
  • Z. Cao had proposed NFRM(new fuzzy reasoning method) which infers in detail using relation matrix. In spite of the small inference rules, it shows good performance than mamdani's fuzzy inference method. But the most of fuzzy systems are difficult to make fuzzy inference rules in the case of MIMO system. The past days, We had proposed the MIMO fuzzy inference which had extended a Z. Cao's fuzzy inference to handle MIMO system. But many times and effort needed to determine the relation matrix elements of MIMO fuzzy inference by heuristic and trial and error method in order to improve inference performances. In this paper, we propose a MIMO fuzzy inference method with the learning ability witch is used a gradient descent method in order to improve the performances. Through the computer simulation studies for the inverse kinematics problem of 2-axis robot, we show that proposed inference method using a gradient descent method has good performances.

  • PDF

고속 디지탈 퍼지 추론회로 개발과 산업용 프로그래머블 콘트롤러에의 응용

  • 최성국;김영준;박희재;고덕용;김재옥
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.04a
    • /
    • pp.354-358
    • /
    • 1992
  • This paper describes a development of high speed fuzzy inference circuit for the industrialprocesses. The hardware fuzzy inference circuit is developed utilizing a hardware fuzzy inference circuit is developed utilizing a DSP and a multiplier and accumulator chip. To enhance the inference speed, the pipeline disign is adopted at the bottleneck and the general Max-Min inference method is slightly modified as Max-max method. As a results, the inference speed is evaluated to be 100 KFLIPS. Owing to this high speed feature, satisfactory application can be attained for complex high speed motion control as well as the control of multi-input multi-output nonlinear system. As an application, the developed fuzzy inference circuit is embedded to a PLC (Porgrammable Logic Controller) for industrial process control. For the fuzzy PLC system, to fascilitate the design of the fuzzy control knowledge such as membership functions, rules, etc., a MS-Windows based GUI (Graphical User Interface) software is developed.

A Neuro-Fuzzy Inference System for Sensor Failure Detection Using Wavelet Denoising, PCA and SPRT

  • Na, Man-Gyun
    • Nuclear Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.483-497
    • /
    • 2001
  • In this work, a neuro-fuzzy inference system combined with the wavelet denoising, PCA (principal component analysis) and SPRT (sequential probability ratio test) methods is developed to detect the relevant sensor failure using other sensor signals. The wavelet denoising technique is applied to remove noise components in input signals into the neuro-fuzzy system The PCA is used to reduce the dimension of an input space without losing a significant amount of information. The PCA makes easy the selection of the input signals into the neuro-fuzzy system. Also, a lower dimensional input space usually reduces the time necessary to train a neuro-fuzzy system. The parameters of the neuro-fuzzy inference system which estimates the relevant sensor signal are optimized by a genetic algorithm and a least-squares algorithm. The residuals between the estimated signals and the measured signals are used to detect whether the sensors are failed or not. The SPRT is used in this failure detection algorithm. The proposed sensor-monitoring algorithm was verified through applications to the pressurizer water level and the hot-leg flowrate sensors in pressurized water reactors.

  • PDF

Fuzzy Identification by means of Fuzzy Inference Method and its Optimization by GA (퍼지 추론 방법을 이용한 퍼지 동정과 유전자 알고리즘에 의한 이의 최적화)

  • Park, Byoung-Jun;Park, Chun-Seong;Ahn, Tae-Chon;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.563-565
    • /
    • 1998
  • In this paper, we are proposed optimization method of fuzzy model in order to complex and nonlinear system. In the fuzzy modeling, a premise identification is very important to describe the charateristics of a given unknown system. Then, the proposed fuzzy model implements system structure and parameter identification, using the fuzzy inference method and genetic algorithms. Inference method for fuzzy model presented in our paper include the simplified inference and linear inference. Time series data for gas furance and sewage treatment process are used to evaluate the performance of the proposed model. Also, the performance index with weighted value is proposed to achieve a balance between the results of performance for the training and testing data.

  • PDF

Implementation of Adaptive Impedance Controller using Fuzzy Inference (퍼지추론을 이용한 적응 임피던스 제어기의 구현)

  • Lim, Yong-Taek;Kim, Seung-Woo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.9
    • /
    • pp.423-429
    • /
    • 2001
  • This paper proposes adaptive impedance control algorithm using fuzzy inference when robot contacts with its environments. The characteristics of the adaptive impedance controller is to adapt with parametric uncertainty and nonlinear conditions. The control algorithm is to join impedance controller with fuzzy inference engine. The proposed control method overcomes the problem of impedance controller using gain-tuning algorithm of fuzzy inference engine. We implemented an experimental set-up consisting of environment-generated one-link robot system and DSP system for controller development. We apply the adaptive fuzzy impedance controller to one-link root system, and it shows the good performance on regulating the interactive force in case of contacting with arbitrary environment.

  • PDF

Real-time Implementation of OptoFuzzy Inference System (광 퍼지 추론 시스템의 실시간적 구현)

  • 정유섭;이진호;김우연;김은수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.6
    • /
    • pp.613-620
    • /
    • 1992
  • Recently, there are lots of research work on fuzzy Information theory for many practlcal applications. As the fuzzy control systems become to be sophisticated, they demand more fuzzy parameters, membership functions and fuzzy Inference rules. Eventually, they need effective parallel computing architectures to implement those complex fuzzy inference rules. In this paper, a optical fuzzy Inference system based on 2-D spatial light modulator and digital image board Is Implemented as a new approach for real-time parallel fuzzy computing system. From its good experimental results on the practical fuzzy airconditioner system, a new real-time Opto Fuzzy Inference system Is suggested.

  • PDF

Evaluation of arousal level by EDA and fuzzy inference (피부전기 활동과 fuzzy추론에 의한 각성도의 평가)

  • Kim, Yeon-Ho;Ko, Han-Woo;Yoo, Jun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1856-1859
    • /
    • 1997
  • This paper describes the arousal measurement and the control system using fuzzy logic to prevent drowsy driving. Sugeno's method was used for fuzzy inference in this study. Membership function and rule base were determined form the modfied arousal level criteria. The output of fuzzy inference tracked well the change of subject's arousal level. When IRI(Inter-SIR interval) was under the 60sec, maximum output of three step warning method was medium sound, but that of fuzzy logic system was changed from medium to big. Furthermore, the output of the fuzzy inference was highly correlated with $N_{z}$(r=0.99). Therefore, the fuzzy inference method for evaluation and the control of arousal will be more effective at real driving sityation than three step warning method.ning method.

  • PDF