• 제목/요약/키워드: Fuzzy Inference system

검색결과 942건 처리시간 0.025초

퍼지추론을 이용한 철도.항공시스템에서의 자세제어시스템 (Strapdown Attitude Reference System(SARS) in the Railway and Aviation System using Fuzzy Inference)

  • 김민수;변윤섭;이관섭
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 D
    • /
    • pp.2077-2078
    • /
    • 2006
  • This paper describes the development or a closed-loop Strapdown Attitude Reference System (SARS) algorithm integrated filtering estimator for determining attitude reference for railway and aviation system using fuzzy inference. The SARS consists of 3 single-axis rate gyms in conjunction with 2 single-axis accelerometers. For optimal values of fuzzy systems, we utilize on-line scheduling method for initial values and then use genetic algorithms for fine tuning. Implementation using experimental test data of unmanned aerial vehicle has been performed in order to verify the estimation. The proposed fuzzy inference based SARS demonstrate that more accurate performance can be achieved in comparison with conventional one. The estimation results were compared with the on-board vertical gyro as the reference standard.

  • PDF

퍼지추론을 이용한 저항 점용접부위의 품질평가 알고리듬 (Quality assurance algorithm using fuzzy reasoning for resistance spot weldings)

  • 김주석;이재익;이상룡
    • 대한기계학회논문집A
    • /
    • 제22권3호
    • /
    • pp.644-653
    • /
    • 1998
  • In resistance spot weld, the assurance of weld quality has been a long-standing problem. Since the weld nuggets if resustance spot welding form between the workpieces, visual detection of defects in usually impossible. Welding quality of resistance spot welding can be verified by non destructive and destructive inspections such as X-Ray inspection and testing of weld strength. But these tests, in addition to being time-consuming and costly, can entail risks due to sampling basis. The purpose of this study is the development of the monitoring system based on fuzzy inference, aimed at diagonosis of quality in resistance spot welding. The fuzzy inference system consists of fuzzy input variables, fuzzy membership functions and fuzzy rules. For inferring the welding quality(strength), the experimental data of the spot welding were acquired in various welding conditions with the monitoring system designed. Some fuzzy input variables-maximum, slop and difference values of electrode movement signals-were extracted from the experimental data. It was confirmed that the fuzzy inference values of strength have a .${\pm}$5% error in comparison with actual values for the selected welding conditions(9-10.5KA, 10-14 cycle, 250-300 $kg_f$). This monitoring system can be useful in improving the quality assurance and reliability of the resistance spot welding process.

제어규칙 분해법을 이용한 다변수 퍼지 논리 제어기 (Multivariable Fuzzy Logic Controller using Decomposition of Control Rules)

  • 이평기
    • 한국산업융합학회 논문집
    • /
    • 제9권3호
    • /
    • pp.173-178
    • /
    • 2006
  • For the design of multivariable fuzzy control systems decomposition of control rules is a efficent inference method since it alleviates the complexity of the problem. In some systems, however, inference error of the Gupta's decomposition method is inevitable because of its approximate nature. In this paper we define indices of applicability which decides whether the decomposition method can be applied to a multivariable fuzzy system or not.

  • PDF

FUZZY PETRI NETS AND THEIR APPLICATIONS TO FUZZY REASONING SYSTEMS CONTROL

  • Matsumoto, Tadashi;Sakaguchi, Atsushi;Tsuji, Kohkichi
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1993년도 Fifth International Fuzzy Systems Association World Congress 93
    • /
    • pp.1330-1333
    • /
    • 1993
  • In this paper, first, the fuzzy Petri net inference mechanism with learning function is proposed by using the extended fuzzy Petri nets. Secondly, a control system with this new inference engine is proposed. This system can do automatically and easily the knowledge acquisition from the operator's empirical data and can also be controller adaptively under the big parameter change.

  • PDF

퍼지추론 기반 다항식 RBF 뉴럴 네트워크의 설계 및 최적화 (The Design of Polynomial RBF Neural Network by Means of Fuzzy Inference System and Its Optimization)

  • 백진열;박병준;오성권
    • 전기학회논문지
    • /
    • 제58권2호
    • /
    • pp.399-406
    • /
    • 2009
  • In this study, Polynomial Radial Basis Function Neural Network(pRBFNN) based on Fuzzy Inference System is designed and its parameters such as learning rate, momentum coefficient, and distributed weight (width of RBF) are optimized by means of Particle Swarm Optimization. The proposed model can be expressed as three functional module that consists of condition part, conclusion part, and inference part in the viewpoint of fuzzy rule formed in 'If-then'. In the condition part of pRBFNN as a fuzzy rule, input space is partitioned by defining kernel functions (RBFs). Here, the structure of kernel functions, namely, RBF is generated from HCM clustering algorithm. We use Gaussian type and Inverse multiquadratic type as a RBF. Besides these types of RBF, Conic RBF is also proposed and used as a kernel function. Also, in order to reflect the characteristic of dataset when partitioning input space, we consider the width of RBF defined by standard deviation of dataset. In the conclusion part, the connection weights of pRBFNN are represented as a polynomial which is the extended structure of the general RBF neural network with constant as a connection weights. Finally, the output of model is decided by the fuzzy inference of the inference part of pRBFNN. In order to evaluate the proposed model, nonlinear function with 2 inputs, waster water dataset and gas furnace time series dataset are used and the results of pRBFNN are compared with some previous models. Approximation as well as generalization abilities are discussed with these results.

퍼지-PID 알고리즘을 이용한 필라멘트 와인딩 장력제어에 관한 연구 (A Study on Filament Winding Tension Control using a fuzzy-PID Algorithm)

  • 이승호;이용재;오재윤
    • 한국정밀공학회지
    • /
    • 제21권3호
    • /
    • pp.30-37
    • /
    • 2004
  • This thesis develops a fuzzy-PID control algorithm for control the filament winding tension. It is developed by applying classical PID control technique to a fuzzy logic controller. It is composed of a fuzzy-PI controller and a fuzzy-D controller. The fuzzy-PI controller uses error and integrated error as inputs, and the fuzzy-D controller uses derivative of error as input. The fuzzy-PI controller uses Takagi-Sugeno fuzzy inference system, and the fuzzy-D controller uses Mamdani fuzzy inference system. The fuzzy rule base for the fuzzy-PI controller is designed using 19 rules, and the fuzzy rule base for the fuzzy-D controller is designed using 5 rules. A test-bed is set-up for verifying the effectiveness of the developing control algorithm in control the filament winding tension. It is composed of a mandrel, a carriage, a force sensor, a driving roller, nip rollers, a creel, and a real-time control system. Nip rollers apply a vertical force to a filament, and the driving roller drives it. The real-time control system is developed by using MATLAB/xPC Target. First, experiments for showing the inherent problems of an open-loop control scheme in a filament winding are performed. Then, experiments for showing the robustness of the developing fuzzy-PID control algorithm are performed under various working conditions occurring in a filament winding such as mandrel rotating speed change, carriage traversing, spool radius change, and reference input change.

PCA-based neuro-fuzzy model for system identification of smart structures

  • Mohammadzadeh, Soroush;Kim, Yeesock;Ahn, Jaehun
    • Smart Structures and Systems
    • /
    • 제15권4호
    • /
    • pp.1139-1158
    • /
    • 2015
  • This paper proposes an efficient system identification method for modeling nonlinear behavior of civil structures. This method is developed by integrating three different methodologies: principal component analysis (PCA), artificial neural networks, and fuzzy logic theory, hence named PANFIS (PCA-based adaptive neuro-fuzzy inference system). To evaluate this model, a 3-story building equipped with a magnetorheological (MR) damper subjected to a variety of earthquakes is investigated. To train the input-output function of the PANFIS model, an artificial earthquake is generated that contains a variety of characteristics of recorded earthquakes. The trained model is also validated using the1940 El-Centro, Kobe, Northridge, and Hachinohe earthquakes. The adaptive neuro-fuzzy inference system (ANFIS) is used as a baseline. It is demonstrated from the training and validation processes that the proposed PANFIS model is effective in modeling complex behavior of the smart building. It is also shown that the proposed PANFIS produces similar performance with the benchmark ANFIS model with significant reduction of computational loads.

인공신경망과 퍼지규칙 추출을 이용한 상황적응적 전문가시스템 구축에 관한 연구 (A Study on the Self-Evolving Expert System using Neural Network and Fuzzy Rule Extraction)

  • 이건창;김진성
    • 한국지능시스템학회논문지
    • /
    • 제11권3호
    • /
    • pp.231-240
    • /
    • 2001
  • Conventional expert systems has been criticized due to its lack of capability to adapt to the changing decision-making environments. In literature, many methods have been proposed to make expert systems more environment-adaptive by incorporating fuzzy logic and neural networks. The objective of this paper is to propose a new approach to building a self-evolving expert system inference mechanism by integrating fuzzy neural network and fuzzy rule extraction technique. The main recipe of our proposed approach is to fuzzify the training data, train them by a fuzzy neural network, extract a set of fuzzy rules from the trained network, organize a knowledge base, and refine the fuzzy rules by applying a pruning algorithm when the decision-making environments are detected to be changed significantly. To prove the validity, we tested our proposed self-evolving expert systems inference mechanism by using the bankruptcy data, and compared its results with the conventional neural network. Non-parametric statistical analysis of the experimental results showed that our proposed approach is valid significantly.

  • PDF

$\alpha$-레벨집합 분해에 의한 서보제어용 퍼지추론 하드웨어의 구현 (Implement of Fuzzy Inference Hardware for Servo Control Using $\alpha$ -level Set Decomposition)

  • 홍순일;이요섭;최재용
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 전력전자학술대회 논문집
    • /
    • pp.662-665
    • /
    • 2001
  • As the fuzzy control is applied to servo system the hardware implementation of the fuzzy information systems requires the high speed operations, short real time control and the small size systems. The aims of this study is to develop hardware of the fuzzy information systems to be apply to servo system. In this paper, we propose a calculation method of approximate reasoning for fuzzy control based on $\alpha$-level set decomposition of fuzzy sets by quantize $\alpha$-cuts. This method can be easily implemented with analog hardware. The influence of quantization levels of $\alpha$-cuts on output from fuzzy inference engine is investigated. It is concluded that 4 quantization levels give sufficient result for fuzzy control performance of do servo system. It examined useful with experiment for dc servo system.

  • PDF

적응 뉴로 퍼지추론 기법에 의한 비선형 시스템의 구조 동정에 관한 연구 (Structure Identification of Nonlinear System Using Adaptive Neuro-Fuzzy Inference Technique)

  • 이준탁;정형환;심영진;김형배;박영식
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1996년도 추계학술대회 학술발표 논문집
    • /
    • pp.298-301
    • /
    • 1996
  • This paper describes the structure Identification of nonlinear function using Adaptive Neuro-Fuzzy Inference Technique(ANFIS). Nonlinear mapping relationship between inputs and outputs were modeled by Sugeno-Takaki's Fuzzy Inference Method. Specially, the consequent parts were identified using a series of 1st order equations and the antecedent parts using triangular type membership function or bell type ones. According to learning Rules of ANFIS, adjustable parameters were converged rapidly and accurately.

  • PDF