• Title/Summary/Keyword: Fuzzy Inference Network

Search Result 288, Processing Time 0.021 seconds

Fuzzy Neural Controller with Additive Hybrid Operators

  • Hayashi, Yoichi;Keller, James M.;Chen, Zhihong
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1993년도 Fifth International Fuzzy Systems Association World Congress 93
    • /
    • pp.1118-1120
    • /
    • 1993
  • Fuzzy logic places a considerable burden on an inference engine for applications such as control or approximate reasoning. Various neural network architectures have been proposed to deal with the computational task, and yet, maintain flexibility in the desired traits of the final system. Recently, we introduced a trainable network architecture whose nodes implement weighted Yager additive hybrid operators for fuzzy logic inference in an approximate reasoning setting. In this paper we examine the utility of such networks for control situations. We show that they are capable of learning control functions which are piece-wise monotonic in each of the variables. The learning ability is demonstrated through an example.

  • PDF

계층적 클러스터링과 Gaussian Mixture Model을 이용한 뉴로-퍼지 모델링 (A Neuro-Fuzzy Modeling using the Hierarchical Clustering and Gaussian Mixture Model)

  • 김승석;곽근창;유정웅;전명근
    • 한국지능시스템학회논문지
    • /
    • 제13권5호
    • /
    • pp.512-519
    • /
    • 2003
  • 본 논문에서는 계층적 클러스터링과 GMM을 순차적으로 이용하여 최적의 파라미터를 추정하고 이를 뉴로-퍼지 모델의 초기 파리미터로 사용하여 모델의 성능 개선을 제안한다. 반복적인 시도 중 가장 좋은 파라미터를 선택하는 기존의 알고리즘 과 달리 계층적 클러스터링은 데이터들 간의 유클리디언 거리를 이용하여 클러스터를 생성하므로 반복적인 시도가 불필요하다. 또한 클러스터링 방법에 의해 퍼지 모델링을 행하므로 클러스터와 동일한 갯수의 적은 규칙을 갖는다. 제안된 방법의 유용함을 비선형 데이터인 Box-Jenkins의 가스로 예측 문제와 Sugeno의 비선형 시스템에 적용하여 이전의 연구보다 적은 규칙으로도 성능이 개선되는 것을 보였다.

PCA-based neuro-fuzzy model for system identification of smart structures

  • Mohammadzadeh, Soroush;Kim, Yeesock;Ahn, Jaehun
    • Smart Structures and Systems
    • /
    • 제15권4호
    • /
    • pp.1139-1158
    • /
    • 2015
  • This paper proposes an efficient system identification method for modeling nonlinear behavior of civil structures. This method is developed by integrating three different methodologies: principal component analysis (PCA), artificial neural networks, and fuzzy logic theory, hence named PANFIS (PCA-based adaptive neuro-fuzzy inference system). To evaluate this model, a 3-story building equipped with a magnetorheological (MR) damper subjected to a variety of earthquakes is investigated. To train the input-output function of the PANFIS model, an artificial earthquake is generated that contains a variety of characteristics of recorded earthquakes. The trained model is also validated using the1940 El-Centro, Kobe, Northridge, and Hachinohe earthquakes. The adaptive neuro-fuzzy inference system (ANFIS) is used as a baseline. It is demonstrated from the training and validation processes that the proposed PANFIS model is effective in modeling complex behavior of the smart building. It is also shown that the proposed PANFIS produces similar performance with the benchmark ANFIS model with significant reduction of computational loads.

Takagi-Sugeno 추론기법과 신경망을 연계한 뉴로-퍼지 홍수예측 모형의 구축 및 적용 (II) : 실제 유역에 대한 적용 및 검증 (Establishment and Application of Neuro-Fuzzy Flood Forecasting Model by Linking Takagi-Sugeno Inference with Neural Network (II) : Application and Verification)

  • 최승용;한건연
    • 한국수자원학회논문집
    • /
    • 제44권7호
    • /
    • pp.537-551
    • /
    • 2011
  • 본 연구에서는 앞선 연구를 통해 선정된 최적 입력 자료 조합을 이용하여 한강수계의 왕숙천과 금강유역의 갑천에 대한 Takagi-Sugeno 퍼지기법과 신경망을 연계한 뉴로-퍼지 홍수예측 모형을 구축하였다. 구축된 뉴로-퍼지 홍수예측 모형을 한강수계의 왕숙천과 금강유역의 갑천에 적용하여 30분, 60분, 90분, 120분, 150분, 180분의 선행시간에 대해 각각 홍수예측을 수행하였다. 선행시간별 예측수위를 관측수위와 비교한 결과 안정되고 정확도 높은 홍수예측을 하는 것을 확인할 수 있었다. 추가적으로 정량적 평가를 위해 평균제곱근 오차(Root Mean Square Error)와 같은 통계지표를 산정하여 모형의 적용성을 검증하였다. 검증 결과 모든 통계지표에서 큰 오차 없이 성공적으로 홍수예측이 모의됨을 확인할 수 있었다. 본 연구결과는 향후 중소하천에서 충분한 선행시간을 확보한 정확도 높은 홍수정보시스템의 구축에 활용할 수 있을 것으로 판단된다.

Takagi-Sugeno 추론기법과 신경망을 연계한 뉴로-퍼지 홍수예측 모형의 구축 및 적용 (I) : 최적 입력자료 조합의 선정 (Establishment and Application of Neuro-Fuzzy Real-Time Flood Forecasting Model by Linking Takagi-Sugeno Inference with Neural Network (I) : Selection of Optimal Input Data Combinations)

  • 최승용;김병현;한건연
    • 한국수자원학회논문집
    • /
    • 제44권7호
    • /
    • pp.523-536
    • /
    • 2011
  • 본 연구의 목적은 중소하천에서의 홍수예측을 위해 사용되는 기존의 수문학적 모형이 가지고 있는 문제점을 개선한 홍수예측 모형을 개발하는데 있다. 이를 위해 기존의 수문학적 강우-유출 모형에서 사용되는 많은 수문학적 자료 및 매개변수들의 사용 없이 오직 수위 및 강우측정 자료만을 이용하여 홍수를 예측할 수 있는 Takagi-Sugeno 퍼지 추론기법과 신경망을 연계한뉴로-퍼지홍수예측 모형을 구축하고자 하였다. 뉴로-퍼지 홍수예측 모형의 예측정확도는 입력자료로 사용되는 강우와 수위 자료의 시간적 분포 및 자료의 수에 의해 결정된다. 따라서 본 연구에서는 홍수예측 모형 구축을 위한 최적 입력 자료 조합 선정을 위해 다양한 강우와 수위의 입력자료 조합을 구성하여 적용하였고, 이를 통해 홍수 예측을 위한 뉴러-퍼지 홍수예측 모형의 최적 입력 자료 조합을 선정하였다.

FNN을 이용한 활성오니 공정 모델링 및 시뮬레이터 설계 (Modeling & simulator design for A.S.P using FNN)

  • 최진혁;박종진;남의석;오성권;우광방
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.412-416
    • /
    • 1993
  • In this paper, fuzzy-neural network is proposed to identify the Activated Sludge Process(A.S.P) in sewage treatment such as "IF-THEN" type fuzzy rules and using various learning methods and improved complex method, the performance index of the identified model is improved. The proposed FNN has the neural network structure of which the connection weights have particular meanings for obtaining fuzzy inference rules and for tuning membership functions. And based on the identified model, graphic simulator which can analize nonlinear characteristics of A.S.P and generate control strategy for A.S.P is being developed.developed.

  • PDF

Application of Adaptive Neuro-Fuzzy Inference System for Interference Management in Heterogeneous Network

  • Palanisamy, Padmaloshani;Sivaraj, Nirmala
    • ETRI Journal
    • /
    • 제40권3호
    • /
    • pp.318-329
    • /
    • 2018
  • Femtocell (FC) technology envisaged as a cost-effective approach to attain better indoor coverage of mobile voice and data service. Deployment of FCs over macrocell forms a heterogeneous network. In urban areas, the key factor limits the successful deployment of FCs is inter-cell interference (ICI), which severely affects the performance of victim users. Autonomous FC transmission power setting is one straightforward way for coordinating ICI in the downlink. Application of intelligent control using soft computing techniques has not yet explored well for wireless networks. In this work, autonomous FC transmission power setting strategy using Adaptive Neuro Fuzzy Inference System is proposed. The main advantage of the proposed method is zero signaling overhead, reduced computational complexity and bare minimum delay in performing power setting of FC base station because only the periodic channel measurement reports fed back by the user equipment are needed. System level simulation results validate the effectiveness of the proposed method by providing much better throughput, even under high interference activation scenario and cell edge users can be prevented from going outage.

PREDICTION OF RESIDUAL STRESS FOR DISSIMILAR METALS WELDING AT NUCLEAR POWER PLANTS USING FUZZY NEURAL NETWORK MODELS

  • Na, Man-Gyun;Kim, Jin-Weon;Lim, Dong-Hyuk
    • Nuclear Engineering and Technology
    • /
    • 제39권4호
    • /
    • pp.337-348
    • /
    • 2007
  • A fuzzy neural network model is presented to predict residual stress for dissimilar metal welding under various welding conditions. The fuzzy neural network model, which consists of a fuzzy inference system and a neuronal training system, is optimized by a hybrid learning method that combines a genetic algorithm to optimize the membership function parameters and a least squares method to solve the consequent parameters. The data of finite element analysis are divided into four data groups, which are split according to two end-section constraints and two prediction paths. Four fuzzy neural network models were therefore applied to the numerical data obtained from the finite element analysis for the two end-section constraints and the two prediction paths. The fuzzy neural network models were trained with the aid of a data set prepared for training (training data), optimized by means of an optimization data set and verified by means of a test data set that was different (independent) from the training data and the optimization data. The accuracy of fuzzy neural network models is known to be sufficiently accurate for use in an integrity evaluation by predicting the residual stress of dissimilar metal welding zones.

퍼지 신경망 제어기의 구조 및 매개 변수 최적화 (The Structure and Parameter Optimization of the Fuzzy-Neuro Controller)

  • 장욱;권오국;주영훈;윤태성;박진배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 B
    • /
    • pp.739-742
    • /
    • 1997
  • This paper proposes the structure and parameter optimization technique of fuzzy neural networks using genetic algorithm. Fuzzy neural network has advantages of both the fuzzy inference system and neural network. The determination of the optimal parameters and structure of the fuzzy neural networks, however, requires special efforts. To solve these problems, we propose a new learning method for optimization of fuzzy neural networks using genetic algorithm. It can optimize the structure and parameters of the entire fuzzy neural network globally. Numerical example is provided to show the advantages of the proposed method.

  • PDF

Analysis of Physiological Responses and Use of Fuzzy Information Granulation-Based Neural Network for Recognition of Three Emotions

  • Park, Byoung-Jun;Jang, Eun-Hye;Kim, Kyong-Ho;Kim, Sang-Hyeob
    • ETRI Journal
    • /
    • 제37권6호
    • /
    • pp.1231-1241
    • /
    • 2015
  • In this study, we investigate the relationship between emotions and the physiological responses, with emotion recognition, using the proposed fuzzy information granulation-based neural network (FIGNN) for boredom, pain, and surprise emotions. For an analysis of the physiological responses, three emotions are induced through emotional stimuli, and the physiological signals are obtained from the evoked emotions. To recognize the emotions, we design an FIGNN recognizer and deal with the feature selection through an analysis of the physiological signals. The proposed method is accomplished in premise, consequence, and aggregation design phases. The premise phase takes information granulation using fuzzy c-means clustering, the consequence phase adopts a polynomial function, and the aggregation phase resorts to a general fuzzy inference. Experiments show that a suitable methodology and a substantial reduction of the feature space can be accomplished, and that the proposed FIGNN has a high recognition accuracy for the three emotions using physiological signals.