• Title/Summary/Keyword: Fuzzy Inference Network

Search Result 287, Processing Time 0.024 seconds

The Estimation of Link Travel Speed Using Hybrid Neuro-Fuzzy Networks (Hybrid Neuro-Fuzzy Network를 이용한 실시간 주행속도 추정)

  • Hwang, In-Shik;Lee, Hong-Chul
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.26 no.4
    • /
    • pp.306-314
    • /
    • 2000
  • In this paper we present a new approach to estimate link travel speed based on the hybrid neuro-fuzzy network. It combines the fuzzy ART algorithm for structure learning and the backpropagation algorithm for parameter adaptation. At first, the fuzzy ART algorithm partitions the input/output space using the training data set in order to construct initial neuro-fuzzy inference network. After the initial network topology is completed, a backpropagation learning scheme is applied to optimize parameters of fuzzy membership functions. An initial neuro-fuzzy network can be applicable to any other link where the probe car data are available. This can be realized by the network adaptation and add/modify module. In the network adaptation module, a CBR(Case-Based Reasoning) approach is used. Various experiments show that proposed methodology has better performance for estimating link travel speed comparing to the existing method.

  • PDF

Classification of Korean Character Type using Multi Neural Network and Fuzzy Inference based on Block Partition for Each Type (형식별 블럭분할에 기초한 다중신경망과 퍼지추론에 의한 한글 형식분류)

  • Pyeon, Seok-Beom;Park, Jong-An
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.4
    • /
    • pp.5-11
    • /
    • 1994
  • In this paper, the ciassification of Korean character type using multi neural network and fuzzy inference based on block partition is studied. For the effective classification of a consonant and a vowel, block partition method which devide the region of a consonant and a vowel for each type in the character is proposed. And the partitioned block can be changed according to the each type adaptively. For the improvement of classification rate, the multi neural network with a whole and a part neural network is consisted, and the character type by using fuzzy inference is decided. To verify the validity of the proposed method, computer simulation is accomplished, and from the classification rate $92.6\%$, the effectivity of the method is confirmed.

  • PDF

Fuzzy Inference System Based Multiple Neural Network Controllers for Position Control of Ultrasonic Motor (퍼지 추론 시스템 기반의 다중 신경회로망 제어기를 이용한 초음파 모터의 위치제어)

  • Choi, Jae-Weon;Min, Byung-Woo;Park, Un-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.4
    • /
    • pp.209-218
    • /
    • 2001
  • Ultrasonic motors are newly developed motors which are expected to be useful as actuators in many practical systems such as robot arms or manipulators because of several advantages against the electromagnetic motors. However, the precise control of the ultrasonic motor is generally difficult due to the absence of appropriate and rigorous mathematical model. Furthermore, owing to heavy nonlinearity, the position control of a pendulum system driven by the ultrasonic motor has a problem that control method using multiple neural network controllers based on a fuzzy inference system that can determine the initial position of the pendulum in the beginning of control operation. In addition, and appropriate neural network controller that has been learned to operate well at the corresponding initial position is adopted by switching schemes. The effectiveness of the proposed method was verified and evaluated from real experiments.

  • PDF

Design of Self-Organizing Networks with Competitive Fuzzy Polynomial Neuron (경쟁적 퍼지 다항식 뉴론을 가진 자기 구성 네트워크의 설계)

  • Park, Ho-Sung;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2000.11d
    • /
    • pp.800-802
    • /
    • 2000
  • In this paper, we propose the Self-Organizing Networks(SON) based on competitive Fuzzy Polynomial Neuron(FPN) for the optimal design of nonlinear process system. The SON architectures consist of layers with activation nodes based on fuzzy inference rules. Here each activation node is presented as FPN which includes either the simplified or regression Polynomial fuzzy inference rules. The proposed SON is a network resulting from the fusion of the Polynomial Neural Networks(PNN) and a fuzzy inference system. The conclusion part of the rules, especially the regression polynomial uses several types of high-order polynomials such as liner, quadratic and modified quadratic. As the premise part of the rules, both triangular and Gaussian-like membership functions are studied. Chaotic time series data used to evaluate the performance of our proposed model.

  • PDF

Fuzzy Rule Generation and Building Inference Network using Neural Networks (신경망을 이용한 퍼지 규칙 생성과 추론망 구축)

  • 이상령;이현숙;오경환
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.3
    • /
    • pp.43-54
    • /
    • 1997
  • Knowledge acquisition is one of the most difficult problems in designing fuzzy systems. As application domains of fuzzy systems become larger and more complex, it is more difficult to find the relations among the system's input- outpiit variables. Moreover, it takes a lot of efforts to formulate expert's knowledge about complex systems' control actions by linguistic variables. Another difficulty is to define and adjust membership functions properly. Soin conventional fuzzy systems, the membership functions should be adjusted to improve the system performance. This is time-consuming process. In this paper, we suggest a new approach to design a fuzzy system. We design a fuzzy system using two neural networks, Kohonen neural network and backpropagation neural network, which generate fuzzy rules automatically and construct inference network. Since fuzzy inference is performed based on fuzzy relation in this approach, we don't need the membership functions of each variable. Therefore it is unnecessary to define and adjust membership functions and we can get fuzzy rules automatically. The design process of fuzzy system becomes simple. The proposed approach is applied to a simulated automatic car speed control system. We can be sure that this approach not only makes the design process of fuzzy systems simple but also produces appropriate inference results.

  • PDF

Adaptive Fuzzy Inference System using Pruning Techniques

  • Kim, Chang-Hyun;Jang, Byoung-Gi;Lee, Ju-Jang
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.415-418
    • /
    • 2003
  • Fuzzy modelling has the approximation property far the given input-output relationship. Especially, Takagi-Sugeno fuzzy models are widely used because they show very good performance in the nonlinear function approximation problem. But generally there is not the systematic method incorporating the human expert's knowledge or experience in fuzzy rules and it is not easy to End the membership function of fuzzy rule to minimize the output error as well. The ANFIS (Adaptive Network-based Fuzzy Inference Systems) is one of the neural network based fuzzy modelling methods that can be used with various type of fuzzy rules. But in this model, it is the problem to End the optimum number of fuzzy rules in fuzzy model. In this paper, a new fuzzy modelling method based on the ANFIS and pruning techniques with the measure named impact factor is proposed and the performance of proposed method is evaluated with several simulation results.

  • PDF

The Design of Polynomial Network Pattern Classifier based on Fuzzy Inference Mechanism and Its Optimization (퍼지 추론 메커니즘에 기반 한 다항식 네트워크 패턴 분류기의 설계와 이의 최적화)

  • Kim, Gil-Sung;Park, Byoung-Jun;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.7
    • /
    • pp.970-976
    • /
    • 2007
  • In this study, Polynomial Network Pattern Classifier(PNC) based on Fuzzy Inference Mechanism is designed and its parameters such as learning rate, momentum coefficient and fuzzification coefficient are optimized by means of Particle Swarm Optimization. The proposed PNC employes a partition function created by Fuzzy C-means(FCM) clustering as an activation function in hidden layer and polynomials weights between hidden layer and output layer. Using polynomials weights can help to improve the characteristic of the linear classification of basic neural networks classifier. In the viewpoint of linguistic analysis, the proposed classifier is expressed as a collection of "If-then" fuzzy rules. Namely, architecture of networks is constructed by three functional modules that are condition part, conclusion part and inference part. The condition part relates to the partition function of input space using FCM clustering. In the conclusion part, a polynomial function caries out the presentation of a partitioned local space. Lastly, the output of networks is gotten by fuzzy inference in the inference part. The proposed PNC generates a nonlinear discernment function in the output space and has the better performance of pattern classification as a classifier, because of the characteristic of polynomial based fuzzy inference of PNC.

A Study on Genetically Optimized Fuzzy Set-based Polynomial Neural Networks (진화이론을 이용한 최적화 Fuzzy Set-based Polynomial Neural Networks에 관한 연구)

  • Rho, Seok-Beom;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.346-348
    • /
    • 2004
  • In this rarer, we introduce a new Fuzzy Polynomial Neural Networks (FPNNs)-like structure whose neuron is based on the Fuzzy Set-based Fuzzy Inference System (FS-FIS) and is different from that of FPNNs based on the Fuzzy relation-based Fuzzy Inference System (FR-FIS) and discuss the ability of the new FPNNs-like structurenamed Fuzzy Set-based Polynomial Neural Networks (FSPNN). The premise parts of their fuzzy rules are not identical, while the consequent parts of the both Networks (such as FPNN and FSPNN) are identical. This difference results from the angle of a viewpoint of partition of input space of system. In other word, from a point of view of FS-FIS, the input variables are mutually independent under input space of system, while from a viewpoint of FR-FIS they are related each other. In considering the structures of FPNN-like networks such as FPNN and FSPNN, they are almost similar. Therefore they have the same shortcomings as well as the same virtues on structural side. The proposed design procedure for networks' architecture involves the selection of appropriate nodes with specific local characteristics such as the number of input variables, the order of the polynomial that is constant, linear, quadratic, or modified quadratic functions being viewed as the consequent part of fuzzy rules, and a collection of the specific subset of input variables. On the parameter optimization phase, we adopt Information Granulation (IG) based on HCM clustering algorithm and a standard least square method-based learning. Through the consecutive process of such structural and parametric optimization, an optimized and flexible fuzzy neural network is generated in a dynamic fashion. To evaluate the performance of the genetically optimized FSPNN (gFSPNN), the model is experimented with using gas furnace process dataset.

  • PDF

Evaluation of Interpretability for Generated Rules from ANFIS (ANFIS에서 생성된 규칙의 해석용이성 평가)

  • Song, Hee-Seok;Kim, Jae-Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.15 no.4
    • /
    • pp.123-140
    • /
    • 2009
  • Fuzzy neural network is an integrated model of artificial neural network and fuzzy system and it has been successfully applied in control and forecasting area. Recently ANFIS(Adaptive Network-based Fuzzy Inference System) has been noticed widely among various fuzzy neural network models because of outstanding performance of control and forecasting accuracy. ANFIS has capability to refine its fuzzy rules interactively with human expert. In particular, when we use initial rule structure for machine learning which is generated from human expert, it is highly probable to reach global optimum solution as well as shorten time to convergence. We propose metrics to evaluate interpretability of generated rules as a means of acquiring domain knowledge and compare level of interpretability of ANFIS fuzzy rules to those of C5.0 classification rules. The proposed metrics also can be used to evaluate capability of rule generation for the various machine learning methods.

  • PDF

Sketch Feature Extraction Through Learning Fuzzy Inference Rules with a Neural Network (퍼지규칙의 신경망 학습을 통한 스케치 특징점 추출)

  • Cho, Sung-Mok
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.4
    • /
    • pp.1066-1073
    • /
    • 1998
  • In this paper, we propose a new efficient operator named DBAH (difference between arithmetic mean and harmonic mean) and a technique for extracting sketch features through learning fuzzy inference rules with a neural network. The DBAH operator provide some advantages; sensitivity dependence on local intensities and insensitivity on small rates of intensity change in very dark regions. Also, the proposed fuzzy reasoning technique by a neural network has a good performance in extracting sketch features without human intervention.

  • PDF