• Title/Summary/Keyword: Fuzzy Inference Network

Search Result 288, Processing Time 0.023 seconds

Knowledge-Based Smart System for the Identification of Coronavirus (COVID-19): Battling the Pandemic with Scientific Perspectives

  • Muhammad Saleem;Muhammad Hamid
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.9
    • /
    • pp.127-134
    • /
    • 2024
  • The acute respiratory infection known as a coronavirus (COVID-19) may present with a wide range of clinical manifestations, ranging from no symptoms at all to severe pneumonia and even death. Expert medical systems, particularly those used in the diagnostic and monitoring phases of treatment, have the potential to provide beneficial results in the fight against COVID-19. The significance of healthcare mobile technologies, as well as the advantages they provide, are quickly growing, particularly when such applications are linked to the internet of things. This research work presents a knowledge-based smart system for the primary diagnosis of COVID-19. The system uses symptoms that manifest in the patient to make an educated guess about the severity of the COVID-19 infection. The proposed inference system can assist individuals in self-diagnosing their conditions and can also assist medical professionals in identifying the ailment. The system is designed to be user-friendly and easy to use, with the goal of increasing the speed and accuracy of COVID-19 diagnosis. With the current global pandemic, early identification of COVID-19 is essential to regulate and break the cycle of transmission of the disease. The results of this research demonstrate the feasibility and effectiveness of using a knowledge-based smart system for COVID-19 diagnosis, and the system has the potential to improve the overall response to the COVID-19 pandemic. In conclusion, these sorts of knowledge-based smart technologies have the potential to be useful in preventing the deaths caused by the COVID-19 pandemic.

Analysis of PD Distribution Characteristics and Comparison of Classification Methods according to Electrical Tree Source in Power Cable (전력용 케이블 시편에서 전기트리 발생원에 따른 부분방전 분포 특성 및 발생원 분류기법 비교)

  • Park, Seong-Hee;Jeong, Hae-Eun;Lim, Kee-Joe;Kang, Seong-Hwa
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.1
    • /
    • pp.57-64
    • /
    • 2007
  • One of the cause of insulation failure in power cable is well known by electrical treeing discharge. This is occurred for imposed continuous stress at cable. And this event is related to safety, reliability and maintenance. In this paper, throughout analysis of partial discharge(PD) distribution when occurring the electrical tree, is studied for the purpose of knowing of electrical treeing discharge characteristics according to defects. Own characteristic of tree will be differently processed in each defect and this reason is the first purpose of this paper. To acquire PD data, three defective tree models were made. And their own data is shown by the phase-resolved partial discharge method (PRPD). As a result of PRPD, tree discharge sources have their own characteristics. And if other defects (void, metal particle) exist internal power cable then their characteristics are shown very different. This result Is related to the time of breakdown and this is importance of cable diagnosis. And classification method of PD sources was studied in this paper. It needs select the most useful method to apply PD data classification one of the proposed method. To meet the requirement, we select methods of different type. That is, neural network(NN-BP), adaptive neuro-fuzzy inference system and PCA-LDA were applied to result. As a result of, ANFIS shows the highest rate which value is 98 %. Generally, PCA-LDA and ANFIS are better than BP. Finally, we performed classification of tree progress using ANFIS and that result is 92 %.

A Study for an Optimal Load Balancing Algorithm based on the Real-Time Server Monitor of a Real Server (리얼 서버의 실시간 서버 모니터에 의한 최적 로드 밸런싱 알고리즘에 관한 연구)

  • Han, Il-Seok;Kim, Wan-Yong;Kim, Hag-Bae
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2003.11a
    • /
    • pp.201-204
    • /
    • 2003
  • At a consequence of WWW large popularity, the internet has suffered from various performance problems, such as network congestion and overloaded servers. These days, it is not uncommon to find servers refusing connections because they are overloaded. Web server performance has always been a key issue in the design and operation of on-line systems. With regard to Internet, performance is also critical, because users want fast and easy access to all objects (e.g., documents, graphics, audio, and video) available on the net. To solve this problem, a number of companies are exploring the benefits of having multiple geographically or locally distributed Internet sites. This requires a comprehensive scheme for traffic management, which includes the principle of an optimal load balancing of client requests across multiple clusters of real servers. This paper focuses on the performance analysis of Web server and we apply these results to load balancing in clustering web server. It also discusses the mam steps needed to carry out a WWW performance analysis effort and shows relations between the workload characteristics and system resource usage. Also, we will introduce an optimal load balancing algorithm base on the RTSM (Real-Time Server Monitor) and Fuzzy Inference Engine for the local status of a real server, and the benefits is provided with of the suggested method.

  • PDF

Development of Water Demand Forecasting Simulator and Performance Evaluation (단기 물 수요예측 시뮬레이터 개발과 예측 알고리즘 성능평가)

  • Shin, Gang-Wook;Kim, Ju-Hwan;Yang, Jae-Rheen;Hong, Sung-Taek
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.4
    • /
    • pp.581-589
    • /
    • 2011
  • Generally, treated water or raw water is transported into storage reservoirs which are receiving facilities of local governments from multi-regional water supply systems. A water supply control and operation center is operated not only to manage the water facilities more economically and efficiently but also to mitigate the shortage of water resources due to the increase in water consumption. To achieve the goal, important information such as the flow-rate in the systems, water levels of storage reservoirs or tanks, and pump-operation schedule should be considered based on the resonable water demand forecasting. However, it is difficult to acquire the pattern of water demand used in local government, since the operating information is not shared between multi-regional and local water systems. The pattern of water demand is irregular and unpredictable. Also, additional changes such as an abrupt accident and frequent changes of electric power rates could occur. Consequently, it is not easy to forecast accurate water demands. Therefore, it is necessary to introduce a short-term water demands forecasting and to develop an application of the forecasting models. In this study, the forecasting simulator for water demand is developed based on mathematical and neural network methods as linear and non-linear models to implement the optimal water demands forecasting. It is shown that MLP(Multi-Layered Perceptron) and ANFIS(Adaptive Neuro-Fuzzy Inference System) can be applied to obtain better forecasting results in multi-regional water supply systems with a large scale and local water supply systems with small or medium scale than conventional methods, respectively.

Power peaking factor prediction using ANFIS method

  • Ali, Nur Syazwani Mohd;Hamzah, Khaidzir;Idris, Faridah;Basri, Nor Afifah;Sarkawi, Muhammad Syahir;Sazali, Muhammad Arif;Rabir, Hairie;Minhat, Mohamad Sabri;Zainal, Jasman
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.608-616
    • /
    • 2022
  • Power peaking factors (PPF) is an important parameter for safe and efficient reactor operation. There are several methods to calculate the PPF at TRIGA research reactors such as MCNP and TRIGLAV codes. However, these methods are time-consuming and required high specifications of a computer system. To overcome these limitations, artificial intelligence was introduced for parameter prediction. Previous studies applied the neural network method to predict the PPF, but the publications using the ANFIS method are not well developed yet. In this paper, the prediction of PPF using the ANFIS was conducted. Two input variables, control rod position, and neutron flux were collected while the PPF was calculated using TRIGLAV code as the data output. These input-output datasets were used for ANFIS model generation, training, and testing. In this study, four ANFIS model with two types of input space partitioning methods shows good predictive performances with R2 values in the range of 96%-97%, reveals the strong relationship between the predicted and actual PPF values. The RMSE calculated also near zero. From this statistical analysis, it is proven that the ANFIS could predict the PPF accurately and can be used as an alternative method to develop a real-time monitoring system at TRIGA research reactors.

Application of AI models for predicting properties of mortars incorporating waste powders under Freeze-Thaw condition

  • Cihan, Mehmet T.;Arala, Ibrahim F.
    • Computers and Concrete
    • /
    • v.29 no.3
    • /
    • pp.187-199
    • /
    • 2022
  • The usability of waste materials as raw materials is necessary for sustainable production. This study investigates the effects of different powder materials used to replace cement (0%, 5% and 10%) and standard sand (0%, 20% and 30%) (basalt, limestone, and dolomite) on the compressive strength (fc), flexural strength (fr), and ultrasonic pulse velocity (UPV) of mortars exposed to freeze-thaw cycles (56, 86, 126, 186 and 226 cycles). Furthermore, the usability of artificial intelligence models is compared, and the prediction accuracy of the outputs is examined according to the inputs (powder type, replacement ratio, and the number of cycles). The results show that the variability of the outputs was significantly high under the freeze-thaw effect in mortars produced with waste powder instead of those produced with cement and with standard sand. The highest prediction accuracy for all outputs was obtained using the adaptive-network-based fuzzy inference system model. The significantly high prediction accuracy was obtained for the UPV, fc, and fr of mortars produced using waste powders instead of standard sand (R2 of UPV, fc and ff is 0.931, 0.759 and 0.825 respectively), when under the freeze-thaw effect. However, for the mortars produced using waste powders instead of cement, the prediction accuracy of UPV was significantly high (R2=0.889) but the prediction accuracy of fc and fr was low (R2fc=0.612 and R2ff=0.334).

Metaheuristic models for the prediction of bearing capacity of pile foundation

  • Kumar, Manish;Biswas, Rahul;Kumar, Divesh Ranjan;T., Pradeep;Samui, Pijush
    • Geomechanics and Engineering
    • /
    • v.31 no.2
    • /
    • pp.129-147
    • /
    • 2022
  • The properties of soil are naturally highly variable and thus, to ensure proper safety and reliability, we need to test a large number of samples across the length and depth. In pile foundations, conducting field tests are highly expensive and the traditional empirical relations too have been proven to be poor in performance. The study proposes a state-of-art Particle Swarm Optimization (PSO) hybridized Artificial Neural Network (ANN), Extreme Learning Machine (ELM) and Adaptive Neuro Fuzzy Inference System (ANFIS); and comparative analysis of metaheuristic models (ANN-PSO, ELM-PSO, ANFIS-PSO) for prediction of bearing capacity of pile foundation trained and tested on dataset of nearly 300 dynamic pile tests from the literature. A novel ensemble model of three hybrid models is constructed to combine and enhance the predictions of the individual models effectively. The authenticity of the dataset is confirmed using descriptive statistics, correlation matrix and sensitivity analysis. Ram weight and diameter of pile are found to be most influential input parameter. The comparative analysis reveals that ANFIS-PSO is the best performing model in testing phase (R2 = 0.85, RMSE = 0.01) while ELM-PSO performs best in training phase (R2 = 0.88, RMSE = 0.08); while the ensemble provided overall best performance based on the rank score. The performance of ANN-PSO is least satisfactory compared to the other two models. The findings were confirmed using Taylor diagram, error matrix and uncertainty analysis. Based on the results ELM-PSO and ANFIS-PSO is proposed to be used for the prediction of bearing capacity of piles and ensemble learning method of joining the outputs of individual models should be encouraged. The study possesses the potential to assist geotechnical engineers in the design phase of civil engineering projects.

The Analysis and Design of Advanced Neurofuzzy Polynomial Networks (고급 뉴로퍼지 다항식 네트워크의 해석과 설계)

  • Park, Byeong-Jun;O, Seong-Gwon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.39 no.3
    • /
    • pp.18-31
    • /
    • 2002
  • In this study, we introduce a concept of advanced neurofuzzy polynomial networks(ANFPN), a hybrid modeling architecture combining neurofuzzy networks(NFN) and polynomial neural networks(PNN). These networks are highly nonlinear rule-based models. The development of the ANFPN dwells on the technologies of Computational Intelligence(Cl), namely fuzzy sets, neural networks and genetic algorithms. NFN contributes to the formation of the premise part of the rule-based structure of the ANFPN. The consequence part of the ANFPN is designed using PNN. At the premise part of the ANFPN, NFN uses both the simplified fuzzy inference and error back-propagation learning rule. The parameters of the membership functions, learning rates and momentum coefficients are adjusted with the use of genetic optimization. As the consequence structure of ANFPN, PNN is a flexible network architecture whose structure(topology) is developed through learning. In particular, the number of layers and nodes of the PNN are not fixed in advance but is generated in a dynamic way. In this study, we introduce two kinds of ANFPN architectures, namely the basic and the modified one. Here the basic and the modified architecture depend on the number of input variables and the order of polynomial in each layer of PNN structure. Owing to the specific features of two combined architectures, it is possible to consider the nonlinear characteristics of process system and to obtain the better output performance with superb predictive ability. The availability and feasibility of the ANFPN are discussed and illustrated with the aid of two representative numerical examples. The results show that the proposed ANFPN can produce the model with higher accuracy and predictive ability than any other method presented previously.