1 |
Jang, J.S. (1993), "ANFIS: adaptive-network-based fuzzy inference system", IEEE Transactions on Systems, Man, and Cybernetics, 23(3), 665-685. https://doi.org/10.1109/21.256541.
DOI
|
2 |
Taylor, K.E. (2001), "Summarizing multiple aspects of model performance in a single diagram", J. Geophys. Res. Atmospheres, 106(D7), 7183-7192. https://doi.org/10.1029/2000JD900719.
DOI
|
3 |
Team, R.C. (2013), "R: A language and environment for statistical computing".
|
4 |
Tiryaki, S. and Aydin, A. (2014), "An artificial neural network model for predicting compression strength of heat treated woods and comparison with a multiple linear regression model", Constr. Build. Mater., 62, 102-108. https://doi.org/10.1016/j.conbuildmat.2014.03.041.
DOI
|
5 |
Wankhade, M. and Kambekar, A. (2013), "Prediction of compressive strength of concrete using artificial neural network", Int. J. Sci. Res. Rev., 2(2), 11-26.
|
6 |
Ilangovana, R., Mahendrana, N. and Nagamanib, K. (2008), "Strength and durability properties of concrete containing quarry rock dust as fine aggregate", ARPN J. Eng. Appl. Sci., 3(5), 20-26.
|
7 |
Awoyera P.O., Ajith Abraham I.M., and Viloria A. (2021), "A new formulation for strength characteristics of steel slag aggregate concrete using an artificial intelligence-based approach", Comput. Concrete, 27(4), 333-341. https://doi.org/10.12989/cac.2021.27.4.333.
DOI
|
8 |
Beeralingegowda, B. and Gundakalle, V. (2013), "The effect of addition of Limestone Powder on the properties of selfcompacting concrete", Int. J. Innov. Res. Sci. Eng. Tech., 2(9), 4996.
|
9 |
Chopra, P., Sharma, R.K., Kumar, M. and Chopra, T. (2018), "Comparison of machine learning techniques for the prediction of compressive strength of concrete", Adv. Civil Eng., 2018, 5481705. https://doi.org/10.1155/2018/5481705.
DOI
|
10 |
Devi, K., Saini, B. and Aggarwal, P. (2018), "Effect of accelerators with waste material on the properties of cement paste and mortar", Comput. Concrete, 22(2), 153-159. https://doi.org/10.12989/cac.2018.22.2.153.
DOI
|
11 |
Elyamany, H.E., Elmoaty, A.E.M.A. and Mohamed, B. (2014), "Effect of filler types on physical, mechanical and microstructure of self-compacting concrete and flow-able concrete", Alexandria Eng. J., 53(2), 295-307. https://doi.org/10.1016/j.aej.2014.03.010.
DOI
|
12 |
Enstitusu, T.S. (2016), TS EN 196-1 Cimento deney metotlari- Bolum 1: Dayanim tayini, Turk Standartlari Enstitusu, Ankara, Turkiye.
|
13 |
Awoyera, P.O., Perumal, P., Ohenoja, K. and Mansouri, I. (2022), "Upcycling CO2 for enhanced performance of recycled aggregate concrete and modeling of properties", Structural Integrity of Recycled Aggregate Concrete Produced with Fillers and Pozzolans, Woodhead Publishing. https://doi.org/10.1016/B978-0-12-824105-9.00017-2.
DOI
|
14 |
Uncik, S. and Kmecova, V. (2013), "The effect of basalt powder on the properties of cement composites", Proc. Eng., 65, 51-56. https://doi.org/10.1016/j.proeng.2013.09.010.
DOI
|
15 |
Jackiewicz-Rek, W., Zalegowski, K., Garbacz, A. and Bissonnette, B. (2015), "Properties of cement mortars modified with ceramic waste fillers", Proc. Eng., 108, 681-687. https://doi.org/10.1016/j.proeng.2015.06.199.
DOI
|
16 |
Kankam, C.K., Meisuh, B.K., Sossou, G. and Buabin, T.K. (2017), "Stress-strain characteristics of concrete containing quarry rock dust as partial replacement of sand", Case Stud. Constr. Mater., 7, 66-72. https://doi.org/10.1016/j.cscm.2017.06.004.
DOI
|
17 |
Khashman, A. and Akpinar, P. (2017), "Non-destructive prediction of concrete compressive strength using neural networks", Proc. Comput. Sci., 108, 2358-2362. https://doi.org/10.1016/j.procs.2017.05.039.
DOI
|
18 |
Li, H., Huang, F., Cheng, G., Xie, Y., Tan, Y., Li, L. and Yi, Z. (2016), "Effect of granite dust on mechanical and some durability properties of manufactured sand concrete", Constr. Build. Mater., 109, 41-46. https://doi.org/10.1016/j.conbuildmat.2016.01.034.
DOI
|
19 |
Liaw, A. and Wiener, M. (2002), "Classification and regression by randomForest", R News, 2(3), 18-22.
|
20 |
Nikoo, M., Torabian Moghadam, F. and Sadowski, L. (2015), "Prediction of concrete compressive strength by evolutionary artificial neural networks", Adv. Mater. Sci. Eng., 2015, 849126. https://doi.org/10.1155/2015/849126.
DOI
|
21 |
Khademi, F., Akbari, M., Jamal, S.M. and Nikoo, M. (2017), "Multiple linear regression, artificial neural network, and fuzzy logic prediction of 28 days compressive strength of concrete", Front. Struct. Civil Eng., 11(1), 90-99. https://doi.org/10.1007/s11709-016-0363-9.
DOI
|
22 |
Kabay, N., Tufekci, M.M., Kizilkanat, A.B. and Oktay, D. (2015), "Properties of concrete with pumice powder and fly ash as cement replacement materials", Constr. Build. Mater., 85, 1-8. https://doi.org/10.1016/j.conbuildmat.2015.03.026.
DOI
|
23 |
Uysal, M. and Yilmaz, K. (2011), "Effect of mineral admixtures on properties of self-compacting concrete", Cement Concrete Compos., 33(7), 771-776. https://doi.org/10.1016/j.cemconcomp.2011.04.005.
DOI
|
24 |
Unlu, R. (2020), "An assessment of machine learning models for slump flow and examining redundant features", Comput. Concrete, 25(6), 565-574. https://doi.org/10.12989/cac.2020.25.6.565.
DOI
|
25 |
Vapnik, V. (2013), The Nature of Statistical Learning Theory, Springer Science Business Media, NY, USA.
|
26 |
Vijayalakshmi, M. and Sekar, A. (2013), "Strength and durability properties of concrete made with granite industry waste", Constr. Build. Mater., 46, 1-7. https://doi.org/10.1016/j.conbuildmat.2013.04.018.
DOI
|
27 |
Rana, A., Kalla, P. and Csetenyi, L.J. (2015), "Sustainable use of marble slurry in concrete", J. Clean. Prod., 94, 304-311. https://doi.org/10.1016/j.jclepro.2015.01.053.
DOI
|
28 |
Sadek, D.M., El-Attar, M.M. and Ali, H.A. (2016), "Reusing of marble and granite powders in self-compacting concrete for sustainable development", J. Clean. Prod., 121, 19-32. https://doi.org/10.1016/j.jclepro.2016.02.044.
DOI
|
29 |
Meisuh, B.K., Kankam, C.K. and Buabin, T.K. (2018), "Effect of quarry rock dust on the flexural strength of concrete", Case Stud. Constr. Mater., 8, 16-22. https://doi.org/10.1016/j.cscm.2017.12.002.
DOI
|
30 |
Erdem, R.T. and O zturk, A.U. (2012), "Mermer tozu katkisinin cimento harci donma-cozunme ozellikleri uzerine etkisi", Bitlis Eren U niversitesi Fen Bilimleri Dergisi, 1(2), 85-91.
|
31 |
Haykin, S. (2007), "Neural networks: A Comprehensive foundation", Prentice-Hall Inc, Upper Saddle River, NJ, USA.
|
32 |
Kelestemur, O., Yildiz, S., Gokcer, B. and Arici, E. (2014), "Statistical analysis for freeze-thaw resistance of cement mortars containing marble dust and glass fiber", Mater. Des., 60, 548-555. https://doi.org/10.1016/j.matdes.2014.04.013.
DOI
|
33 |
Kisi, O., Mansouri, I., Awoyera, P.O. and Lee, C.H. (2021), "Modeling flexural overstrength factor for steel beams using heuristic soft-computing methods", Struct., 34, 3238-3246. https://doi.org/10.1016/j.istruc.2021.09.075.
DOI
|
34 |
Mansouri, I., Ostovari, M., Awoyera, P.O. and Hu, J.W. (2021), "Predictive modeling of the compressive strength of bacteriaincorporated geopolymer concrete using a gene expression programming approach", Comput. Concrete, 27(4), 319-332. https://doi.org/10.12989/cac.2021.27.4.319.
DOI
|
35 |
Wold, S., Ruhe, A., Wold, H. and Dunn, I., WJ. (1984), "The collinearity problem in linear regression. The partial least squares (PLS) approach to generalized inverses", SIAM J. Sci. Statist. Comput., 5(3), 735-743. https://doi.org/10.1137/0905052.
DOI
|
36 |
Zhu, W. and Gibbs, J.C. (2005), "Use of different limestone and chalk powders in self-compacting concrete", Cement Concrete Res., 35(8), 1457-1462. https://doi.org/10.1016/j.cemconres.2004.07.001.
DOI
|
37 |
Wang, C.C., Ho, C.L., Wang, H.Y. and Tang, C. (2019), "Assessment of compressive strength of cement mortar with glass powder from the early strength", Comput. Concrete, 24(2), 151-158. https://doi.org/10.12989/cac.2019.24.2.151.
DOI
|
38 |
Nguyen, H.A., Chang, T.P., Shih, J.Y. and Djayaprabha, H.S. (2018), "Enhancement of low-cement self-compacting concrete with dolomite powder", Constr. Build. Mater., 161, 539-546. https://doi.org/10.1016/j.conbuildmat.2017.11.148.
DOI
|
39 |
Nisnevich, M., Sirotin, G. and Eshel, Y. (2003), "Lightweight concrete containing thermal power station and stone quarry waste", Mag. Concrete Res., 55(4), 313-320. https://doi.org/10.1680/macr.2003.55.4.313.
DOI
|
40 |
Nunes, C. and Slizkova, Z. (2016), "Freezing and thawing resistance of aerial lime mortar with metakaolin and a traditional water-repellent admixture", Constr. Build. Mater., 114, 896-905. https://doi.org/10.1016/j.conbuildmat.2016.04.029.
DOI
|
41 |
Cihan, M.T. (2019), "Prediction of concrete compressive strength and slump by machine learning methods", Adv. Civil Eng., 2019, 3069046. https://doi.org/10.1155/2019/3069046.
DOI
|
42 |
Uysal, M. and Sumer, M. (2011), "Performance of selfcompacting concrete containing different mineral admixtures", Constr. Build. Mater., 25(11), 4112-4120. https://doi.org/10.1016/j.conbuildmat.2011.04.032.
DOI
|
43 |
Celik, T. and Marar, K. (1996), "Effects of crushed stone dust on some properties of concrete", Cement Concrete Res., 26(7), 1121-1130. https://doi.org/10.1016/0008-8846(96)00078-6.
DOI
|
44 |
Etli, S., Cemalgil, S. and Onat, O. (2021), "Effect of pumice powder and artificial lightweight fine aggregate on selfcompacting mortar", Comput. Concrete, 27(3), 241-252. https://doi.org/10.12989/cac.2021.27.3.241.
DOI
|
45 |
Barbhuiya, S. (2011), "Effects of fly ash and dolomite powder on the properties of self-compacting concrete", Constr. Build. Mater., 25(8), 3301-3305. https://doi.org/10.1016/j.conbuildmat.2011.03.018.
DOI
|
46 |
Binici, H. and Aksogan, O. (2018), "Durability of concrete made with natural granular granite, silica sand and powders of waste marble and basalt as fine aggregate", J. Build. Eng., 19, 109-121. https://doi.org/10.1016/j.jobe.2018.04.022.
DOI
|
47 |
Bonavetti, V. and Irassar, E. (1994), "The effect of stone dust content in sand", Cement Concrete Res., 24(3), 580-590. https://doi.org/10.1016/0008-8846(94)90147-3.
DOI
|
48 |
Breiman, L. (1996), "Bagging predictors", Machine Learn., 24(2), 123-140. https://doi.org/10.1023/A:1018054314350.
DOI
|
49 |
Breiman, L., Friedman, J., Olshen, R. and Stone, C. (1984), "Classification and regression trees", Wadsworth Int. Group, 37(15), 237-251. https://doi.org/10.1201/9781315139470.
DOI
|
50 |
Bustnes, H., Lagerblad, B. and Forssberg, E. (2004), "The function of filler in concrete", Mater. Struct., 37, 74-81. https://doi.org/10.1007/BF02486602.
DOI
|
51 |
Szybilski, M. and Nocun-Wczelik, W. (2015), "The effect of dolomite additive on cement hydration", Proc. Eng., 108, 193-198. https://doi.org/10.1016/j.proeng.2015.06.136.
DOI
|
52 |
Aral, I.F. and Cihan, M.T. (2018), "Investigation of properties of mortars containing waste stone powder instead of sand under freezing-thawing effect", IOP Conference Series: Earth and Environmental Science, September. https://doi.org/10.1088/1755-1315/362/1/012169.
DOI
|
53 |
Dutta, S., Samui, P. and Kim, D. (2018), "Comparison of machine learning techniques to predict compressive strength of concrete", Comput. Concrete, 21(4), 463-470. https://doi.org/10.12989/cac.2018.21.4.463.
DOI
|
54 |
Aral, I.F. and Cihan, M.T. (2017), "Investigation of mortars containing different aggregate waste powder under freezingthawing effect", IATS'17 8th International Advanced Technologies Symposium, Elazig, October.
|
55 |
Enstitusu, T.S. (2000), TS EN 1015-3 Kagir Harci Deney Metotlari-Bolum 3: Taze Harc Kivaminin Tayini (Yayilma Tablasi ile), Turk Standartlari Enstitusu, Ankara, Turkiye.
|
56 |
Golafshani, E.M. and Pazouki, G. (2018), "Predicting the compressive strength of self-compacting concrete containing fly ash using a hybrid artificial intelligence method", Comput. Concrete, 22(4), 419-437. https://doi.org/10.12989/cac.2018.22.4.419.
DOI
|
57 |
Chopra, P., Sharma, R.K. and Kumar, M. (2016), "Prediction of compressive strength of concrete using artificial neural network and genetic programming", Adv. Mater. Sci. Eng., 2016, 7648467. https://doi.org/10.1155/2016/7648467.
DOI
|
58 |
Enstitusu, T.S. (2012), TS EN 12504-4 Beton Deneyleri, Bolum4: Ultrasonik Atimli Dalga Hizinin Tayini, Turk Standartlari Enstitusu, Ankara, Turkiye.
|
59 |
Friedman, J.H. (1991), "Multivariate adaptive regression splines", Annal. Statistics, 19(1), 1-67. https://doi.org/10.1214/aos/1176347963.
DOI
|
60 |
Chang, S.C., Wang, C.C. and Wang, H.Y. (2018), "Study on the engineering and electricity properties of cement mortar added with waste LCD glass and piezoelectric powders", Comput. Concrete, 21(3), 311-319. https://doi.org/10.12989/cac.2018.21.3.311.
DOI
|