• Title/Summary/Keyword: Fuzzy Functions

Search Result 944, Processing Time 0.028 seconds

Development of neural network algorithm for an advanced distributed control system (고급 분산 제어시스템을 위한 신경 회로망 제어 알고리즘의 개발)

  • 이승준;박세화;박동조;김병국;변증남
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.953-958
    • /
    • 1993
  • We develop a neural network control algorithm for the ACS (Advanced Control System). The ACS is an extended version of the DCS (Distributed Control System) to which functions of fault detection and diagnosis and advanced control algorithms are added such as neural networks, fuzzy logics, and so on. In spite of its usefulness proven by computer simulations, the neural network control algorithm, as far as we know, has no tool which makes it applicable to process control. It is necessary that the neural network controller should be turned into the function code for its application to the ACS. So we develop a general method to implement the neural network control systems for the ACS. By simulations using the simulator for the boiler of 'Seoul fire power plant unit 4', the methodology proposed in this paper is validated to have the applicability to process control.

  • PDF

Control of Flexible Joint Robot Using Direct Adaptive Neural Networks Controller

  • Lee, In-Yong;Tack, Han-Ho;Lee, Sang-Bae;Park, Boo-Kwi
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.1 no.1
    • /
    • pp.29-34
    • /
    • 2001
  • This paper is devoted to investigating direct adaptive neural control of nonlinear systems with uncertain or unknown dynamic models. In the direct adaptive neural networks control area, theoretical issues of the existing backpropagation-based adaptive neural networks control schemes. The major contribution is proposing the variable index control approach, which is of great significance in the control field, and applying it to derive new stable robust adaptive neural network control schemes. This new schemes possess inherent robustness to system model uncertainty, which is not required to satisfy any matching condition. To demonstrate the feasibility of the proposed leaning algorithms and direct adaptive neural networks control schemes, intensive computer simulations were conducted based on the flexible joint robot systems and functions.

  • PDF

A Design of the Robust Servo Controller for DC Servo-Motor Using Genetic Algorithm (유전알고리즘을 이용한 강인한 DC 서보제어기의 설계)

  • Kim, Dong-Wan;Hwang, Gi-Hyun;Hwang, Hyun-Joon;Nam, Jing-Lak;Park, June-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.812-814
    • /
    • 1999
  • In this paper, we are applied the Genetic Algorithm (GA) to design of fuzzy logic controller (FLC) for a DC Servo-Motor Speed Control. GA is used to design of the membership functions and scaling factor of FLC. To evaluate the performances of the proposed FLC, we make an experiment on FLC for the speed control of an actual DC servo-motor system with nonlinear characteristics. Experimental results show that proposed controller have better performance than those of PD controller.

  • PDF

A study on intelligent robot based on home network (홈 네트워크 기반의 지능형 홈 로봇의 연구)

  • Jung, Byung-Chan;Park, Jin-Hyun;Choi, Dong-Suk;Kim, Hun-Mo
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.792-798
    • /
    • 2003
  • This paper is about implementation of intelligent robot based on home network. Existing robots are mainly stand alone type. Home network is spreading rapidly and can play an important role as a path for informations between appliances in home. Robot can be more intelligent and have versatile functions with a junction of home network. By distribution of tasks through home network, robot doesn't have to process every task. In addition, robot can access to appliances through network as appliances are added continuously. In the future, smart space in which robot behaves on various types of network is in expectation. In this research, home network based system which consists of home server, embedded robot, and intelligent robot is proposed and implemented.

  • PDF

A Concept of Self-Optimizing Forming System (자율 최적 성형 공정 시스템 개발)

  • Park, Hong-Seok;Hoang, Van-Vinh;Song, Jun-Yeob;Kim, Dong-Hoon;Le, Ngoc-Tran
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.2
    • /
    • pp.292-297
    • /
    • 2013
  • Nowadays, a strategy of the self-optimizing machining process is an imperative approach to improve the product quality and increase productivity of manufacturing systems. This paper presents a concept of self-optimizing forming system that allows the forming system automatically to adjust the forming parameters online for guarantee the product quality and avoiding the machine stop. An intelligent monitoring system that has the functions of observation, evaluation and diagnostic is developed to evaluate the pully quality during forming process. Any abnormal variation of forming machining parameters could be detected and adjusted by an intelligent control system aiming to maintain the machining stability and the desired product quality. This approach is being practiced on the pully forming machine for evaluating the efficiency of the proposed strategy.

Design of FLC for High-Angle-of-Attack Flight Using Adaptive Evolutionary Algorithm

  • Won, Tae-Hyun;Hwang, Gi-Hyun;Park, June-Ho;Lee, Man-Hyung
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.187-196
    • /
    • 2003
  • In this paper, a new methodology of evolutionary computations - An Adaptive Evolutionary Algorithm (AEA) is proposed. AEA uses a genetic algorithm (GA) and an evolution strategy (ES) in an adaptive manner in order to take merits of two different evolutionary computations : global search capability of GA and local search capability of ES. In the reproduction procedure, the proportions of the population by GA and ES are adaptively modulated according to the fitness. AEA is used to. designing fuzzy logic controller (FLC) for a high-angle-of-attack flight system for a super-maneuverable version of F-18 aircraft. AEA is used to determine the membership functions and scaling factors of an FLC. The computer simulation results show that the FLC has met both robustness and performance requirements.

The NURBS Human Body Modeling Using Local Knot Removal

  • Jo, Joon-Woo;Han, Sung-Soo
    • Fibers and Polymers
    • /
    • v.6 no.4
    • /
    • pp.348-354
    • /
    • 2005
  • These days consumers' various demands are accelerating research on apparel manufacturing system including automatic measurement, pattern generation, and clothing simulation. Accordingly, methods of reconstructing human body from point-clouds measured using a three dimensional scanning device are required for apparel CAD system to support these functions. In particular, we present in this study a human body reconstruction method focused on two issues, which are the decision of the number of control point for each sectional curve with error bound and the local knot removal for reducing the unusual concentration of control points. The approximation of sectional curves with error bounds as an approximation criterion leads all sectional curves to their own particular shapes apart from the number of control points. In addition, the application of the local knot removal to construction of human body sectional curves reduces the unusual concentration of control points effectively. The results may be used to produce an apparel CAD system as an automatic pattern generation system and a clothing simulation system through the low level control of NUBS or NURBS.

Compensation of a Squint Free Phased Array Antenna System using Artificial Neural Networks

  • Kim, Young-Ki;Jeon, Do-Hong;Park, Chiyeon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.2
    • /
    • pp.182-186
    • /
    • 2004
  • This paper describes an advanced compensation for non-linear functions designed to remove steering aberrations from phased array antennas. This system alters the steering command applied to the antenna in a way that the appropriate angle commands are given to the array steering software for the antenna to point to the desired position instead of squinting. Artificial neural networks are used to develop the inverse function necessary to correct the aberration. Also a straightforward antenna steering function is implemented with neural networks for the 9-term polynomials of forward steering function. In all cases the aberration is removed resulting in small RMS angular errors across the operational angle space when the actual antenna position is compared with the desired position. The use of neural network model provides a method of producing a non-linear system that can correct antenna performance and demonstrates the feasibility of generating an inverse steering algorithm.

Interval Valued Solution of Multiobjective Problem with Interval Cost, Source and Destination Parameters

  • Hong, Dug-Hun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.9 no.1
    • /
    • pp.42-46
    • /
    • 2009
  • Das et al. [EJOR 117(1999) 100-112] discussed the real valued solution procedure of the multiobjective transportation problem(MOTP) where the cost coefficients of the objective functions, and the source and destination parameters have been expressed as interval values by the decision maker. In this note, we consider the interval valued solution procedure of the same problem. This problem has been transformed into a classical multiobjective transportation problem where the constraints with interval source and destination parameters have been converted into deterministic ones. Numerical examples have been provided to illustrate the solution procedure for this case.

DIND Data Fusion with Covariance Intersection in Intelligent Space with Networked Sensors

  • Jin, Tae-Seok;Hashimoto, Hideki
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.1
    • /
    • pp.41-48
    • /
    • 2007
  • Latest advances in network sensor technology and state of the art of mobile robot, and artificial intelligence research can be employed to develop autonomous and distributed monitoring systems. In this study, as the preliminary step for developing a multi-purpose "Intelligent Space" platform to implement advanced technologies easily to realize smart services to human. We will give an explanation for the ISpace system architecture designed and implemented in this study and a short review of existing techniques, since there exist several recent thorough books and review paper on this paper. Instead we will focus on the main results with relevance to the DIND data fusion with CI of Intelligent Space. We will conclude by discussing some possible future extensions of ISpace. It is first dealt with the general principle of the navigation and guidance architecture, then the detailed functions tracking multiple objects, human detection and motion assessment, with the results from the simulations run.