• Title/Summary/Keyword: Fuzzy Control Cell

Search Result 60, Processing Time 0.028 seconds

Commercial Hydrogen Vehicle Power Distribution Simulation Using Fuzzy Control (퍼지 제어를 이용한 수소 상용차 전력 분배 시뮬레이션)

  • JAESU HAN;JAESU HAN;JONGBIN WOO;SANGSEOK YU
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.4
    • /
    • pp.369-380
    • /
    • 2023
  • There is no clear standard for estimating the power distribution of fuel cells and batteries to meet the required power in hydrogen electric vehicles. In this study, a hydrogen electric vehicle simulation model equipped with a vehicle electric component model including a fuel cell system was built, and a power distribution strategy between fuel cells and batteries was established. The power distribution model was operated through two control strategies using step control and fuzzy control, and each control strategy was evaluated through data derived from the simulation. As a result of evaluation through the behavior data of state of charge, fuel cell current and balance of plant, fuzzy control was evaluated as a proper strategy in terms of control stability and durability.

A machine-cell formation method based on fuzzy set (퍼지 이론에 기초한 머신-셀 구성방법)

  • 이노성;임춘우
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1565-1568
    • /
    • 1997
  • In this paper, a fuzzy based machine-cell formation algorithm for cellular manufacturing is presented. The fuzzy lovic is employed to express the degree of appropriateness when alternative machnies are specified to process a part shape. For machine grouping, the similarity coefficient based approach is used. The algorithm produces efficient machine cells and part families which maximize the similarity values.

  • PDF

Study of Selective Cell Drop Scheme using Fuzzy Logic on TCP/IP (TCP/IP에서 퍼지 논리를 사용한 선택적 셀 제거 방식에 관한 연구)

  • 조미령;양성현;이상훈;강준길
    • Journal of the Korea Computer Industry Society
    • /
    • v.3 no.1
    • /
    • pp.95-104
    • /
    • 2002
  • This paper presents some studies on the Internet TCP/IP(Transmission Control Protocol-Internet Protocol) traffic over ATM(Asynchronous Transfer Mode) UBR(Unspecified Bit Rate) and ABR(Available Bit Rate) classes of service. Fuzzy logic prediction has been used to improve the efficiency and fairness of traffic throughput. For TCP/IP over UBR, a novel fuzzy logic based cell dropping scheme is presented. This is referred to as fuzzy logic selective cell drop (FSCD). A key feature of the scheme is its ability to accept or drop a new incoming packet dynamically based on the predicted future buffer condition in the switch. This is achieved by using fuzzy logic prediction for the production of a drop factor. Packet dropping decision is then based on this drop factor and a predefined threshold value. Simulation results show that the proposed scheme significantly improves TCP/IP efficiency and fairness. To study TCP/IP over ABR, we applied the fuzzy logic ABR service buffer management scheme from our previous work to both approximate and exact fair rate computation ER(Explicit cell Rate) switch algorithms. We then compared the performance of the fuzzy logic control with conventional schemes. Simulation results show that on zero TCP packet loss, the fuzzy logic control scheme achieves maximum efficiency and perfect fairness with a smaller buffer size. When mixed with VBR traffic, the fuzzy logic control scheme achieves higher efficiency with lower cell loss.

  • PDF

Control of Booster Output Voltage in Fuel Cell Power Plant (연료전지발전용 부스터의 출력전압제어 연구)

  • Han, Soo-Bin;Jung, Bong-Man;Shin, Dong-Ryul;Choi, Soo-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.1038-1040
    • /
    • 1992
  • Booster is used widely as one of the step-up DC/DC power converter in power conversion process for fuel cell power plant which have the electrical characteristic of the high current density and low cell voltage. In view of control system, booster can be unstable when it is operated in broad operation range because the transfer function of booster has zero in right half plane of s-domain. So for reliable operation, controller must make the system stable in whole working range. In this paper, the two control method such as digital PID control and fuzzy control is studied for booster output voltage regulation in fuel cell plant. The design procedure of PID control and fuzzy control is described. And the experiment of designed controller action is performed in various operation points for controller performance test.

  • PDF

Survey on Energy Management Strategy for Fuel Cell Hybrid Electric Vehicles (연료전지 하이브리드 자동차의 에너지 운용전략에 관한 기술조사)

  • Lee, Nam-Su;Jeong, Gu-Min;Ahn, Hyun-Sik;Kim, Do-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.511-513
    • /
    • 2005
  • The fuel cell system has inherent limitation such as slow response time and low fuel economy especially at the low power region, and thus, the battery system has come to be used to compensate for the fuel cell system. This type of hybrid configuration has many advantages, however, the energy management strategy is essentially required. The work in this paper presents survey on recent power management strategies for fuel cell hybrid electric vehicles. For three power management strategies: basic control method. object function-based control method, and fuzzy logic-based control method. each strategy is reviewed and discussed with other strategy.

  • PDF

Energy management strategies of a fuel cell/battery hybrid system using fuzzy logics (퍼지 논리를 이용한 연료전지/축전지 하이브리드 시스템의 운전제어)

  • Jeong, Kwi-Seong;Lee, Won-Yong;Kim, Chang-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.1
    • /
    • pp.1-11
    • /
    • 2004
  • Hybrid power systems with fuel cells and batteries have the potential to improve the operation efficiency and dynamic response. A proper load management strategy is important to better system efficiency and endurance in hybrid systems. In this paper, a fuzzy logic algorithm has been used to determine the fuel cell output power depending on the external required power and the battery state of charge(SoC). If the required power of the hybrid system is small and the SoC is small, then the greater part of the fuel cell power is used to charge the battery pack. If the required power is relatively big and the SoC is big, then fuel cell and battery are concurrently used to supply the required power. These IF-THEN operation rules are implemented by fuzzy logic for the energy management system of hybrid system. The strategy is evaluated by simulation. The results show that fuzzy logic can be effectively used to optimize the operational efficiency of hybrid system and to maintain the battery SoC properly.

Fuzzy Logic-Based Energy Management Strategy for FCHEVs (연료전지 하이브리드 자동차에 대한 퍼지논리 기반 에너지 운용전략)

  • Ahn Hyun-Sik;Lee Nam-Su
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.12
    • /
    • pp.713-715
    • /
    • 2005
  • The work in this paper presents development of fuzzy logic-based energy management strategy for a fuel cell hybrid electric vehicle. In order for the fuel cell system to overcome the inherent limitation such as slow response time and low fuel economy especially at the low power region, the battery system has come to compensate for the fuel cell system. This type of hybrid configuration has many advantages, however, the energy management strategy between power sources is essentially required. For the optimal power distribution between the fuel cell system and the battery system, a fuzzy logic-based energy management strategy is proposed. In order to show the validity and the robustness of suggested strategy, some simulations are performed for the standard drive cycles.

The MPPT Control of Photovoltaic System using the Fuzzy PI Controller (퍼지 PI 제어기를 이용한 태양광 발전시스템의 MPPT 제어)

  • Ko, Jae-Sub;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.2
    • /
    • pp.9-18
    • /
    • 2014
  • This paper proposes the fuzzy PI controller for maximum power point tracking(MPPT) control of photovoltaic system. The output characteristics of the solar cell are a nonlinear and affected by a temperature, the solar radiation. The MPPT control is a very important technique in order to increase an output and efficiency of the photovoltaic system. The conventional perturbation and observation(PO) and incremental conductance(IC) are the method which finding maximum power point(MPP) by the continued self-excitation vibration, and uses the fixed step size. If the fixed step size is a large, the tracking speed of maximum power point is faster, but the tracking accuracy in the steady state is decreased. On the contrary, when the fixed step size is a small, the tracking accuracy is increased and the tracking speed is slower. Therefore, this paper proposes the MPPT control using the fuzzy PI controller that can be improve a MPPT control performance. The fuzzy PI controller is adjusted a input of PI controller by fuzzy control and compensated a cumulative error of fuzzy control by PI controller. The fuzzy PI MPPT control is compared to conventional PO and IC MPPT method for various temperature and radiation condition. This paper proves the validity of the fuzzy PI controller using these results.

DEVELOPMENT OF EMEVATOR GROUP SUPERVISIRY SYSTEM WITH FUZZY MADE

  • Park, Hee-Chul;Lee, See-Hun;Choi, Don;Woo, Kwang-Bang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.390-394
    • /
    • 1994
  • A elevator group supervisory system is designed to perform efficient operation of multiple elevators, and its basic function is to assign an appropriate elevator to a given hall-cell. In this paper, in order to improve elevator group control performance, we propose a new dispatching system which includes fuzzy multi-attribute decision making(MADM). In most cases, the purpose of group control is to maximize control goals as much as possible. Unfortunately, the decision of optimal elevator to a given hall cell is made with very uncertain information of the system, and some of control goals are related each other. The uncertainty is mainly resulted from car calls generated by serving hall calls. A fuzzy MADM algorithm is proposed to deal with these problems to improve system performance.

  • PDF

Comparative Study on Power Control Strategies for Fuel Cell Hybrid Electric Vehicles (연료전지 하이브리드 자동차에 대한 에너지 운용전략의 비교 연구)

  • Ki, Young-Hun;Jeong, Gu-Min;Ahn, Hyun-Sik;Kim, Do-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.198-200
    • /
    • 2006
  • In this paper, three types of power control strategies for controlling a Fuel Cell Hybrid Electric Vehicle(FCHEV) are studied in view of fuel economy. The FCHEV has become one of alternatives for future vehicles since it does emit water only without any exhaust gas while it has a high well-to-wheel efficiency together with an energy saving due to regenerative braking. However, it has also several disadvantages such as the complexity of vehicle system, the increased weight and the extra battery cost. Among various power control strategies, a static power control strategy, a power assist control strategy and a fuzzy logic-based power control strategy are simulated and compared to show the effectiveness of each method.

  • PDF