• Title/Summary/Keyword: Fuzzy Contrast

Search Result 79, Processing Time 0.019 seconds

The Classification of Fatty Liver by Ultrasound Imaging using Computerizing Method (컴퓨터 기법을 이용한 초음파 영상에서의 지방간 분류)

  • Jang, Hyun-Woo;Kim, Kwang-Beak;Kim, Chang Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.9
    • /
    • pp.2206-2212
    • /
    • 2013
  • We propose a method for the classification of fatty liver by ultrasound imaging using Fuzzy Contrast Enhancement Technique and FCM. ROI images are extracted after removal of information data except ultrasound image of the liver and the kidney then image contrast is improved by Fuzzy Contrast Enhancement Algorithm. The images applied Fuzzy Contrast Enhancement Technique is applied average binarization then ROI images of liver and kidney parenchyma are extracted using Blob algorithm. Representative brightness is extracted in the liver and kidney images using the most frequent brightness level after classification of 10 brightness levels. We applied this method to ultrasound images and a radiologist confirmed the accuracy of diagnosis for fatty liver. This method would be a model for automatic method in the diagnosis of fatty liver.

Automatic Threshold Selection and Contrast Intensification Technique for Image Enhancement (영상 향상을 위한 자동 임계점 선택 및 대비 강화 기법)

  • Lee, Geum-Boon;Cho, Beom-Joon
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.4
    • /
    • pp.462-470
    • /
    • 2008
  • This study applies fuzzy functions to improve image quality under the assumption that uncertainty of image information due to low contrast is based on vagueness and ambiguity of the brightness pixel values. To solve the problem of low contrast images whose brightness distribution is inclined, we use the k-means algorithm as a parameter of the fuzzy function, through which automatic critical points can be found to differentiate objects from background and contrast between bright and dark points can be improved. The fuzzy function is presented at the three main stages presented to improve image quality: fuzzification, contrast enhancement and defuzzification. To measure improved image quality, we present the fuzzy index and entropy index and in comparison with those of histogram equalization technique, it shows outstanding performance.

  • PDF

An Image Contrast Enhancement Technique Using Integrated Adaptive Fuzzy Clustering Model (IAFC 모델을 이용한 영상 대비 향상 기법)

  • 이금분;김용수
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.279-282
    • /
    • 2001
  • This paper presents an image contrast enhancement technique for improving the low contrast images using the improved IAFC(Integrated Adaptive Fuzzy Clustering) Model. The low pictorial information of a low contrast image is due to the vagueness or fuzziness of the multivalued levels of brightness rather than randomness. Fuzzy image processing has three main stages, namely, image fuzzification, modification of membership values, and image defuzzification. Using a new model of automatic crossover point selection, optimal crossover point is selected automatically. The problem of crossover point selection can be considered as the two-category classification problem. The improved MEC can classify the image into two classes with unsupervised teaming rule. The proposed method is applied to some experimental images with 256 gray levels and the results are compared with those of the histogram equalization technique. We utilized the index of fuzziness as a measure of image quality. The results show that the proposed method is better than the histogram equalization technique.

  • PDF

An Optimized Multiple Fuzzy Membership Functions based Image Contrast Enhancement Technique

  • Mamoria, Pushpa;Raj, Deepa
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.3
    • /
    • pp.1205-1223
    • /
    • 2018
  • Image enhancement is an emerging method for analyzing the images clearer for interpretation and analysis in the spatial domain. The goal of image enhancement is to serve an input image so that the resultant image is more suited to the particular application. In this paper, a novel method is proposed based on Mamdani fuzzy inference system (FIS) using multiple fuzzy membership functions. It is observed that the shape of membership function while converting the input image into the fuzzy domain is the essential important selection. Then, a set of fuzzy If-Then rule base in fuzzy domain gives the best result in image contrast enhancement. Based on a different combination of membership function shapes, a best predictive solution can be determined which can be suitable for different types of the input image as per application requirements. Our result analysis shows that the quality attributes such as PSNR, Index of Fuzziness (IOF) parameters give different performances with a selection of numbers and different sized membership function in the fuzzy domain. To get more insight, an optimization algorithm is proposed to identify the best combination of the fuzzy membership function for best image contrast enhancement.

A Fuzzy Image Contrast Enhancement Technique using the K-means Algorithm (K-means 알고리듬을 이용한 퍼지 영상 대비 강화 기법)

  • 정준희;김용수
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.295-299
    • /
    • 2002
  • This paper presents an image contrast enhancement technique for improving low contrast images. We applied fuzzy logic to develop an image contrast enhancement technique in the viewpoint of considering that the low pictorial information of a low contrast image is due to the vaguness or fuzziness of the multivalued levels of brightness rather than randomness. The fuzzy image contrast enhancement technique consists of three main stages, namely, image fuzzification, modification of membership values, and image defuzzification. In the stage of image fuzzification, we need to select a crossover point. To select the crossover point automatically the K-means algorithm is used. The problem of crossover point selection can be considered as the two-category, object and background, classification problem. The proposed method is applied to an experimental image with 256 gray levels and the result of the proposed method is compared with that of the histogram equalization technique. We used the index of fuzziness as a measure of image quality. The result shows that the proposed method is better than the histogram equalization technique.

The Clip Limit Decision of Contrast Limited Adaptive Histogram Equalization for X-ray Images using Fuzzy Logic (퍼지를 이용한 X-ray 영상의 대비제한 적응 히스토그램 평활화 한계점 결정)

  • Cho, Hyunji;Kye, Heewon
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.7
    • /
    • pp.806-817
    • /
    • 2015
  • The contrast limited adaptive histogram equalization(CLAHE) is an advanced method for the histogram equalization which is a common contrast enhancement technique. The CLAHE divides the image into sections, and applies the contrast limited histogram equalization for each section. X-ray images can be classified into three areas: skin, bone, and air area. In clinical application, the interest area is limited to the skin or bone area depending on the diagnosis region. The CLAHE could deteriorate X-ray image quality because the CLAHE enhances the area which doesn't need to be enhanced. In this paper, we propose a new method which automatically determines the clip limit of CLAHE's parameter to improve X-ray image quality using fuzzy logic. We introduce fuzzy logic which is possible to determine clip limit proportional to the interest of users. Experimental results show that the proposed method improve images according to the user's preference by focusing on the subject.

MR diagnosis of cranial neuritis focusing on facial neuritis: Performance of contrast-enhanced 3D-FLAIR technique

  • Lee, Ho Kyu;Koh, Myeong Ju;Kim, Seung Hyoung;Oh, Jung-Hwan
    • Journal of Medicine and Life Science
    • /
    • v.16 no.1
    • /
    • pp.1-5
    • /
    • 2019
  • Our purpose was to evaluate usefulness of the contrast-enhanced 3 dimensional fluid attenuated inversion recovery (3D-FLAIR) technique of half brain volume to diagnose the patients with facial neuritis based on segment-based analysis. We assessed retrospectively 17 consecutive patients who underwent brain MR imaging at 3 tesla for facial neuritis: 11 patients with idiopathic facial neuritis and 6 with herpes zoster oticus. Contrast enhanced 3D-FLAIR sequences of the half brain volume were analyzed and 3D T1-weighted sequence of the full brain volume were used as the base-line exam. Enhancement of the facial nerve was determined in each segment of 5 facial nerve segments by two radiologists. Sensitivity, specificity and accuracy of enhancement of each segment were assessed. The authors experienced a prompt fuzzy CSF enhancement in the fundus of the internal auditory canal in patients with enhancement of the canalicular segment. Interobserver agreement of CE 3D-FLAIR was excellent(${\kappa}$-value 0.885). Sensitivity, specificity, and accuracy of each segment are 1.0, 0.823, 0.912 in the canalicular segment; 0.118, 1.0, 0.559 in the labyrinthine segment; 0.823, 0.294, 0.559 in the anterior genu; 0.823, 0.529, 0.676 in the tympanic segment; 0.823, 0.235, 0.529 in the mastoid segment, respectively. In addition, those of prompt fuzzy enhancement were 0.647, 1.0, and 0.824, respectively. Incidence of prompt fuzzy enhancement with enhancement of the canalicular segment was 11 sites(55%): 6 (54.5%) in idiopathic facial neuritis and 5 (83.3%) in herpes zoster. Enhancement of the canalicular segment and prompt fuzzy enhancement on CE 3D-FLAIR was significantly correlated with occurrence of facial neuritis (p<0.001). CE 3D-FLAIR technique of the half brain volume is useful to evaluate the patients with facial neuritis as an adjunct sequence in addition to contrast-enhanced 3D T1-weighted sequence. On segment-based analysis, contrast enhancement of the canalicular segment is the most reliable. Prompt fuzzy enhancement is seen in not only herpes zoster, but in idiopathic facial neuritis.

An Intelligent Surveillance System using Fuzzy Contrast and HOG Method (퍼지 콘트라스트와 HOG 기법을 이용한 지능형 감시 시스템)

  • Kim, Kwang-Baek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.6
    • /
    • pp.1148-1152
    • /
    • 2012
  • In this paper, we propose an intelligent surveillance system using fuzzy contrast and HOG method. This surveillance system is mainly for the intruder detection. In order to enhance the brightness difference, we apply fuzzy contrast and also apply subtraction method to before/after the surveillance. Then the system identifies the intrusion when the difference of histogram between before/after surveillance is sufficiently large. If the incident happens, the camera stops automatically and the analysis of the screen is performed with fuzzy binarization and Blob method. The intruder is detected and tracked in real time by HOG method and linear SVM. The proposed system is implemented and tested in real world environment and showed acceptable performance in both detection rate and tracking success rate.

An Image Contrast Enhancement Technique Using the Improved Integrated Adaptive Fuzzy Clustering Model (개선된 IAFC 모델을 이용한 영상 대비 향상 기법)

  • 이금분;김용수
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.9
    • /
    • pp.777-781
    • /
    • 2001
  • This paper presents an image contrast enhancement technique for improving the low contrast images using the improved IAFC(Integrated Adaptive Fuzzy Clustering) model. The low pictorial information of a low contrast image is due to the vagueness or fuzziness of the multivalued levels of brightness rather than randomness. Fuzzy image processing has three main stages, namely, image fuzzification, modification of membership values, and image defuzzification. Using a new model of automatic crossover point selection, optimal crossover point is selected automatically. The problem of crossover point selection can be considered as the two-category classification problem. The improved IAFC model is used to classify the image into two classes. The proposed method is applied to several experimental images with 256 gray levels and the results are compared with those of the histogram equalization technique. We utilized the index of fuzziness as a measure of image quality. The results show that the proposed method is better than the histogram equalization technique.

  • PDF

A use of fuzzy set in linear programming problems (선형문제에서의 퍼지집합 이용)

  • 전용진
    • Korean Management Science Review
    • /
    • v.10 no.2
    • /
    • pp.1-9
    • /
    • 1993
  • This paper shows the application of fuzzy set and nonlinear membership function to linear programming problems in a fuzzy environment. In contrast to typical linear programming problems, the objectives and constraints of the problem in a fuzzy environment are defined imprecisely. This paper describes that fuzzy linear programming models can be formulated using the basic concepts of membership functions and fuzzy sets, and that they can be solved by quadratic programming methods. In a numerical example, a linear programming problem with two constraints and two decision variables is provided to illustrate the solution procedure.

  • PDF