• Title/Summary/Keyword: Fuzzy Classification

Search Result 572, Processing Time 0.025 seconds

FMMN-based Neuro-Fuzzy Classifier and Its Application (FMMN 기반 뉴로-퍼지 분류기와 응용)

  • 곽근창;전명근;유정웅
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.259-262
    • /
    • 2000
  • In this paper, an Adaptive neuro-fuzzy Inference system(ANFIS) using fuzzy min-max network(FMMN) is proposed. Fuzzy min-max network classifier that utilizes fuzzy sets as pattern classes is described. Each fuzzy set is an aggregation of fuzzy set hyperboxes. Here, the proposed method transforms the hyperboxes into gaussian menbership functions, where the transformed membership functions are inserted for generating fuzzy rules of ANFIS. Finally, we applied the proposed method to the classification problem of iris data and obtained a better performance than previous works.

  • PDF

Classification of Epilepsy Using Distance-Based Feature Selection (거리 기반의 특징 선택을 이용한 간질 분류)

  • Lee, Sang-Hong
    • Journal of Digital Convergence
    • /
    • v.12 no.8
    • /
    • pp.321-327
    • /
    • 2014
  • Feature selection is the technique to improve the classification performance by using a minimal set by removing features that are not related with each other and characterized by redundancy. This study proposed new feature selection using the distance between the center of gravity of the bounded sum of weighted fuzzy membership functions (BSWFMs) provided by the neural network with weighted fuzzy membership functions (NEWFM) in order to improve the classification performance. The distance-based feature selection selects the minimum features by removing the worst features with the shortest distance between the center of gravity of BSWFMs from the 24 initial features one by one, and then 22 minimum features are selected with the highest performance result. The proposed methodology shows that sensitivity, specificity, and accuracy are 97.7%, 99.7%, and 98.7% with 22 minimum features, respectively.

Pattern classification on the basis of unnecessary attributes reduction in fuzzy rule-based systems (퍼지규칙 기반 시스템에서 불필요한 속성 감축에 의한 패턴분류)

  • Son, Chang-Sik;Kim, Doo-Ywan
    • Journal of Internet Computing and Services
    • /
    • v.8 no.3
    • /
    • pp.109-118
    • /
    • 2007
  • This paper proposed a method that can be simply analyzed instead of the basic general Fuzzy rule that its insufficient characters are cut out. Based on the proposed method. Rough sets are used to eliminate the incomplete attributes included in the rule and also for a classification more precise; the agreement of the membership function's output extracted the maximum attributes. Besides, the proposed method in the simulation shows that in order to verify the validity, compare the max-product result of fuzzy before and after reducing rule hosed on the rice taste data; then, we can see that both the max-product result of fuzzy before and after reducing rule are exactly the same; for a verification more objective, we compared the defuzzificated real number section.

  • PDF

FUZZY SELECTION AND EXISTENCE OF FUZZY FIXED POINT

  • Kim, Won-Kyu;Park, Kyoo-Hong;Lee, Kyoung-Hee
    • Journal of applied mathematics & informatics
    • /
    • v.2 no.1
    • /
    • pp.17-24
    • /
    • 1995
  • In this paper we shall prove a new fuzzy continuous selec-tion theorem in a compact convex set and next a fixed point theorem for fuzzy mappings is established.

$\beta$-COMPACTNESS IN L-FUZZY TOPOLOGICAL SPACES

  • Cho, S.H;Kim, M.Y
    • Journal of applied mathematics & informatics
    • /
    • v.9 no.1
    • /
    • pp.359-370
    • /
    • 2002
  • The purpose of this paper is to introduce and discuss the concept of $\beta$-compactness for L-fuzzy topological spaces.

Polynomial Fuzzy Radial Basis Function Neural Network Classifiers Realized with the Aid of Boundary Area Decision

  • Roh, Seok-Beom;Oh, Sung-Kwun
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.2098-2106
    • /
    • 2014
  • In the area of clustering, there are numerous approaches to construct clusters in the input space. For regression problem, when forming clusters being a part of the overall model, the relationships between the input space and the output space are essential and have to be taken into consideration. Conditional Fuzzy C-Means (c-FCM) clustering offers an opportunity to analyze the structure in the input space with the mechanism of supervision implied by the distribution of data present in the output space. However, like other clustering methods, c-FCM focuses on the distribution of the data. In this paper, we introduce a new method, which by making use of the ambiguity index focuses on the boundaries of the clusters whose determination is essential to the quality of the ensuing classification procedures. The introduced design is illustrated with the aid of numeric examples that provide a detailed insight into the performance of the fuzzy classifiers and quantify several essentials design aspects.

A Study on the Algorithm for Underwater Target Automatic Classification using the Passive Sonar (수동소나를 이용한 수중물체 자동판별기법 연구)

  • 이성은;최수복;노도영
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.76-84
    • /
    • 2000
  • As first step of any acoustic defence system, a attacking target warning system needs to be extremely reliable. This means the system must ensure a high probability of target classification together with a very low false alarm rate. In this paper, a algorithms for underwater target automatic classification is available for use in the passive sonar will be presented. In first, we will describe the precise automatic extraction of frequency lines for the detection of acoustic signatures. Also, a neural network and fuzzy based algorithms for target classification will be described. Thus the performances of these algorithms are very good with a high probability of classification.

  • PDF

Fuzzy Sets and Decision Marking in Nuclear Science

  • Ruan, D.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1058-1061
    • /
    • 1993
  • Fuzzy set theory has been extensively researched in various fields of engineering. In nuclear science, a significant influence of fuzzy sets can be noticed. However, applications of fuzzy set theory to nuclear engineering is novel. In this paper, we start with a basic statement of the decision-making process based on fuzzy set theory, and then apply it to nuclear science with some practical applications (a fuzzy decision making in an accidental release to the atmosphere as well as in a problem of land suitability classification). We believe that the use of fuzzy set theory in nuclear science has potential advantages.

  • PDF

Tire Tread Pattern Classification Using Fuzzy Clustering Algorithm (퍼지 클러스터링 알고리즘을 이용한 타이어 접지면 패턴의 분류)

  • 강윤관;정순원;배상욱;김진헌;박귀태
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.2
    • /
    • pp.44-57
    • /
    • 1995
  • In this paper GFI (Generalized Fuzzy Isodata) and FI (Fuzzy Isodata) algorithms are studied and applied to the tire tread pattern classification problem. GFI algorithm which repeatedly grouping the partitioned cluster depending on the fuzzy partition matrix is general form of GI algorithm. In the constructing the binary tree using GFI algorithm cluster validity, namely, whether partitioned cluster is feasible or not is checked and construction of the binary tree is obtained by FDH clustering algorithm. These algorithms show the good performance in selecting the prototypes of each patterns and classifying patterns. Directions of edge in the preprocessed image of tire tread pattern are selected as features of pattern. These features are thought to have useful information which well represents the characteristics of patterns.

  • PDF

The Classification of Fatty Liver by Ultrasound Imaging using Computerizing Method (컴퓨터 기법을 이용한 초음파 영상에서의 지방간 분류)

  • Jang, Hyun-Woo;Kim, Kwang-Beak;Kim, Chang Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.9
    • /
    • pp.2206-2212
    • /
    • 2013
  • We propose a method for the classification of fatty liver by ultrasound imaging using Fuzzy Contrast Enhancement Technique and FCM. ROI images are extracted after removal of information data except ultrasound image of the liver and the kidney then image contrast is improved by Fuzzy Contrast Enhancement Algorithm. The images applied Fuzzy Contrast Enhancement Technique is applied average binarization then ROI images of liver and kidney parenchyma are extracted using Blob algorithm. Representative brightness is extracted in the liver and kidney images using the most frequent brightness level after classification of 10 brightness levels. We applied this method to ultrasound images and a radiologist confirmed the accuracy of diagnosis for fatty liver. This method would be a model for automatic method in the diagnosis of fatty liver.