• 제목/요약/키워드: Fuzzy C-means clustering

검색결과 310건 처리시간 0.027초

정보 입자기반 연속전인 최적화를 통한 자기구성 퍼지 다항식 뉴럴네트워크 : 설계와 해석 (Self-Organizing Fuzzy Polynomial Neural Networks by Means of IG-based Consecutive Optimization : Design and Analysis)

  • 박호성;오성권
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제55권6호
    • /
    • pp.264-273
    • /
    • 2006
  • In this paper, we propose a new architecture of Self-Organizing Fuzzy Polynomial Neural Networks (SOFPNN) by means of consecutive optimization and also discuss its comprehensive design methodology involving mechanisms of genetic optimization. The network is based on a structurally as well as parametrically optimized fuzzy polynomial neurons (FPNs) conducted with the aid of information granulation and genetic algorithms. In structurally identification of FPN, the design procedure applied in the construction of each layer of a SOFPNN deals with its structural optimization involving the selection of preferred nodes (or FPNs) with specific local characteristics and addresses specific aspects of parametric optimization. In addition, the fuzzy rules used in the networks exploit the notion of information granules defined over system's variables and formed through the process of information granulation. That is, we determine the initial location (apexes) of membership functions and initial values of polynomial function being used in the premised and consequence part of the fuzzy rules respectively. This granulation is realized with the aid of the hard c-menas clustering method (HCM). For the parametric identification, we obtained the effective model that the axes of MFs are identified by GA to reflect characteristic of given data. Especially, the genetically dynamic search method is introduced in the identification of parameter. It helps lead to rapidly optimal convergence over a limited region or a boundary condition. To evaluate the performance of the proposed model, the model is experimented with using two time series data(gas furnace process, nonlinear system data, and NOx process data).

Data Clustering Method Using a Modified Gaussian Kernel Metric and Kernel PCA

  • Lee, Hansung;Yoo, Jang-Hee;Park, Daihee
    • ETRI Journal
    • /
    • 제36권3호
    • /
    • pp.333-342
    • /
    • 2014
  • Most hyper-ellipsoidal clustering (HEC) approaches use the Mahalanobis distance as a distance metric. It has been proven that HEC, under this condition, cannot be realized since the cost function of partitional clustering is a constant. We demonstrate that HEC with a modified Gaussian kernel metric can be interpreted as a problem of finding condensed ellipsoidal clusters (with respect to the volumes and densities of the clusters) and propose a practical HEC algorithm that is able to efficiently handle clusters that are ellipsoidal in shape and that are of different size and density. We then try to refine the HEC algorithm by utilizing ellipsoids defined on the kernel feature space to deal with more complex-shaped clusters. The proposed methods lead to a significant improvement in the clustering results over K-means algorithm, fuzzy C-means algorithm, GMM-EM algorithm, and HEC algorithm based on minimum-volume ellipsoids using Mahalanobis distance.

FCM을 이용한 역광 이미지의 효율적인 컬러 색상 보정 (Efficiently Color Compensation in Back-Light Image using Fuzzy c-means Clustering Algorithm)

  • 김영탁;유재형;한헌수
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2011년도 제43차 동계학술발표논문집 19권1호
    • /
    • pp.37-38
    • /
    • 2011
  • 본 논문은 상대적으로 대비도 차이가 크게 나타나는 역광 이미지에 대해서 Retinex 알고리즘을 적용하여 보정 했을 경우 발생하는 밝은 영역에서의 컬러 성분의 손실을 개선하기 위한 새로운 기법을 제안한다. 역광 이미지의 경우 밝은 영역과 어두운 영역에 대한 밝기 차이가 매우 크게 발생하기 때문에 Retinex 알고리즘을 이용하여 영상의 대비도를 향상시킬 경우 밝은 영역에서의 컬러 성분이 손실되는 현상이 발생한다. 이러한 손실을 보완하기 위해서 원본 영상의 밝은 영역에 해당하는 컬러 성분을 Retinex 알고리즘으로 보정된 영상에 추가해준다. Fuzzy c-means 군집화 알고리즘을 이용하여 원본 영상에서의 밝은 영역과 어두운 영역에 대하여 모든 화소의 소속 정도를 나타내는 퍼지 소속 함수를 구한다. 밝은 영역에 대해서의 컬러 성분은 원본 영상 값에 밝은 영역 퍼지 소속 함수를 적용하고, 어두운 영역에 대해서의 컬러 성분은 Retinex 복원 영상 값에 어두운 영역 퍼지 소속 함수를 이용한다. 제안하는 알고리즘의 성능 평가를 위해 역광 현상이 강하게 나타나는 자연영상들을 대상으로 적용하여 기존의 Retinex 알고리즘(MSRCR) 보다 우수한 성능을 가지고 있음을 보였다.

  • PDF

Interval Type-2 Possibilistic Fuzzy C-means 클러스터링을 위한 퍼지화 상수 결정 방법 (Determining the Fuzzifier Values for Interval Type-2 Possibilistic Fuzzy C-means Clustering)

  • 주원희;이정훈
    • 한국지능시스템학회논문지
    • /
    • 제27권2호
    • /
    • pp.99-105
    • /
    • 2017
  • 일반적으로 type-1 fuzzy set 에 존재하는 불확실성을 보다 효율적으로 다루고 제어하기 위하여 Type-2 fuzzy set (T2 FS)이 널리 사용되고 있다. T2 FS에서 퍼지화 상수 (fuzzifier value) m은 이러한 불확실성을 처리하기 위한 가장 중요한 요소이다. 따라서 적절한 퍼지화 상수 값을 결정하는 연구는 여전히 지속되고 있고, 많은 방법들이 연구 되어 왔다. 본 논문에서는 주어진 패턴을 분류하기 위하여 Interval type-2 possibilistic fuzzy C-means (IT2PFCM) 클러스터링 방법을 사용한다. 클러스터링을 위해 사용된 IT2 PFCM 방법에서 각 데이터에 대하여 적응적으로 적절한 퍼지화 상수의 값을 계산하는 방법을 제안한다. 히스토그램 접근법을 통하여 각각의 데이터 포인트로부터 정보를 추출해 내고 추출된 정보를 이용하여 두 개의 퍼지화 상수인 $m_1$, $m_2$. 값을 결정한다. 이렇게 얻어진 값은 interval type-2 fuzzy의 최저 및 최고 멤버쉽 값을 결정하게 된다.

Design of Hard Partition-based Non-Fuzzy Neural Networks

  • Park, Keon-Jun;Kwon, Jae-Hyun;Kim, Yong-Kab
    • International journal of advanced smart convergence
    • /
    • 제1권2호
    • /
    • pp.30-33
    • /
    • 2012
  • This paper propose a new design of fuzzy neural networks based on hard partition to generate the rules of the networks. For this we use hard c-means (HCM) clustering algorithm. The premise part of the rules of the proposed networks is realized with the aid of the hard partition of input space generated by HCM clustering algorithm. The consequence part of the rule is represented by polynomial functions. And the coefficients of the polynomial functions are learned by BP algorithm. The number of the hard partition of input space equals the number of clusters and the individual partitioned spaces indicate the rules of the networks. Due to these characteristics, we may alleviate the problem of the curse of dimensionality. The proposed networks are evaluated with the use of numerical experimentation.

FCM 이산화를 이용한 스마트 홈에서 행동 모델링 (Intelligent Modeling of User Behavior based on FCM Quantization for Smart home)

  • 정우용;이제헌;윤숙현;조영완;김은태
    • 제어로봇시스템학회논문지
    • /
    • 제13권6호
    • /
    • pp.542-546
    • /
    • 2007
  • In the vision of ubiquitous computing environment, smart objects would communicate each other and provide many kinds of information about user and their surroundings in the home. This information enables smart objects to recognize context and to provide active and convenient services to the customers. However in most cases, context-aware services are available only with expert systems. In this paper, we present generalized activity recognition application in the smart home based on a naive Bayesian network(BN) and fuzzy clustering. We quantize continuous sensor data with fuzzy c-means clustering to simplify and reduce BN's conditional probability table size. And we apply mutual information to learn the BN structure efficiently. We show that this system can recognize user activities about 80% accuracy in the web based virtual smart home.

온 라인 CFCM 기반 적응 뉴로-퍼지 시스템에 의한 온도제어 (Temperature Control by On-line CFCM-based Adaptive Neuro-Fuzzy System)

  • 윤기후;곽근창
    • 대한전자공학회논문지TE
    • /
    • 제39권4호
    • /
    • pp.414-422
    • /
    • 2002
  • 본 논문에서는 적응 제어 문제를 다루기 위해 CFCM 클러스터링과 퍼지 균등화 기법을 이용하여 새로운 적응 뉴로-퍼지 제어기를 설계하고자 한다. 먼저 오프라인에서 CFCM은 입력데이터의 성질과 출력 패턴의 성질까지도 고려한 퍼지 클러스터링 기법으로 적응 뉴로-퍼지 제어기의 구조동정을 수행한다. 파라미터 동정은 역전과 알고리즘과 RLSE(Recursive Least Square Estimate)을 이용한 하이브리드 학습을 수행한다. 온라인 학습에서는 시변특성으로 인해 전제부 및 결론부 파라미터를 실시간으로 계산된다. 시뮬레이션으로 온 라인 적응 뉴로-퍼지 제어 시스템의 성능을 입증하기 위해 목욕물 온도제어 시스템에 대해 다루고 전형적인 퍼지 제어기에 비해 오프 라인과 온 라인 설계 모두 좋은 성능을 보이고자 한다.

적응형 복합 분류 알고리즘을 이용한 초소형 전자소자 탐지 향상 기법 (Improved Detecting Schemes for Micro-Electronic Devices Based on Adaptive Hybrid Classification Algorithms)

  • 김광열;임정환;김송강;조준경;신요안
    • 한국통신학회논문지
    • /
    • 제38A권6호
    • /
    • pp.504-511
    • /
    • 2013
  • 본 논문은 지적재산권 보호를 위한 방안으로 적응형 알고리즘 기반의 초소형 전자소자 탐지 기법을 제안한다. 전자소자를 탐지하는 기본 원리는 분류기의 송신기에서 특정 기본 주파수의 전파가 은닉된 물체로 전파되면, 물체로부터 반사되어 수신기로 들어오는 2차 및 3차 고조파의 크기를 분류기가 비교함으로써 판별하게 된다. 하지만, 측정 과정에서 발생하는 잡음 및 전자파의 간섭으로 인해 분류의 성능이 저하되므로, 이러한 환경에서도 은닉된 전자소자를 적응적으로 판별하기 위해 Fuzzy c-Means 클러스터링 알고리즘과 ${\kappa}$-Nearest Neighbor 분류 알고리즘을 복합적으로 이용하는 방안을 제시한다. 모의실험 결과, 제안 기법이 잡음 및 전자파 간섭 환경에서도 적응적으로 전자소자 잘 탐지할 수 있었으며, 이에 따라 지적재산권을 효율적으로 보호할 수 있을 것으로 기대된다.

퍼지 클러스터링 알고리즘 기반의 라벨 병합을 이용한 이동물체 인식 및 추적 (Recognition and Tracking of Moving Objects Using Label-merge Method Based on Fuzzy Clustering Algorithm)

  • 이성민;성일;주영훈
    • 전기학회논문지
    • /
    • 제67권2호
    • /
    • pp.293-300
    • /
    • 2018
  • We propose a moving object extraction and tracking method for improvement of animal identification and tracking technology. First, we propose a method of merging separated moving objects into a moving object by using FCM (Fuzzy C-Means) clustering algorithm to solve the problem of moving object loss caused by moving object extraction process. In addition, we propose a method of extracting data from a moving object and a method of counting moving objects to determine the number of clusters in order to satisfy the conditions for performing FCM clustering algorithm. Then, we propose a method to continuously track merged moving objects. In the proposed method, color histograms are extracted from feature information of each moving object, and the histograms are continuously accumulated so as not to react sensitively to noise or changes, and the average is obtained and stored. Thereafter, when a plurality of moving objects are overlapped and separated, the stored color histogram is compared with each other to correctly recognize each moving object. Finally, we demonstrate the feasibility and applicability of the proposed algorithms through some experiments.

퍼지 클러스터링 기반 개선된 Fuzzy Binarization 기법을 이용한 세라믹 영상에서의 결함 추출 (Defect Extraction of Ceramic Image using Fuzzy Clustering Based Enhanced Fuzzy Binarization)

  • 최철호;이진유;박헌성;김광백
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2019년도 제59차 동계학술대회논문집 27권1호
    • /
    • pp.23-26
    • /
    • 2019
  • 본 논문에서는 X-Ray 영상에서 용접한 부분의 기공이나 균열 등의 결함 영역을 추출하는 새로운 방법을 제안한다. 제안된 방법은 세라믹 X-Ray 영상에서 비등방성 확산 필터를 적용하여 영상의 잡음을 제거하고, 수직 및 수평 히스토그램을 각각 적용하여 용접 영역을 추출한 후, 최소 자승법을 적용하여 배경 밝기를 제거하고, 사다리꼴 형태의 Fuzzy Stretching기법을 적용하여 명암 값을 강조하여 결함 영역과 그 외의 영역간의 명암 대비를 강조한다. 그리고 Fuzzy C_Means 알고리즘을 적용하여 결함 영역을 세분화한 후, Fuzzy C_Means을 적용하여 생성된 클러스터들의 중심 명암 값을 이용하여 ${\alpha}_-cut$을 설정한 후에 임계구간을 구하고 영상을 이진화하여 최종적으로 결함 영역을 추출한다. 제안된 방법의 결함 추출 성능을 확인하기 위하여 세라믹 X-Ray 영상을 대상으로 실험한 결과, 기존의 방법보다 결함 영역이 정확히 추출되는 것을 확인할 수 있었다.

  • PDF