• Title/Summary/Keyword: Fuzzy C-means

Search Result 449, Processing Time 0.026 seconds

Cluster Merging Using Density based Fuzzy C-Means algorithm (밀도 기반의 퍼지 C-Means 알고리즘을 이용한 클러스터 합병)

  • 한진우;전성해;오경환
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.05a
    • /
    • pp.235-238
    • /
    • 2003
  • Fuzzy C-Means(FCM) 알고리즘은 초기 군집 중심의 개수와 위치에 따라 군집 결과의 성능차이가 많이 나타난다. 하지만 일반적인 경우에 군집 중심의 개수는 분석가의 주관에 의해 결정되고, 임의적으로 결정되기 때문에 원래 데이터의 구조와는 무관하게 수행되어 최적화된 군집화 수행을 실행하지 못하는 경우가 발생하게 된다. 따라서 본 논문에서는 원래의 데이터의 구조에 좀더 근접한 퍼지 군집화를 수행하기 위하여 격자를 바탕으로 한 데이터의 밀도를 이용한 FCM을 제안하고, 이러한 밀도 기반 FCM에 의해 결정된 군집의 합병 기법을 제안하였다. N-차원의 데이터 공간을 N-차원의 격자로 나누고, 초기 군집 중심의 개수와 위치는 각 격자의 밀도를 바탕으로 결정된다. 초기화 이후에 각 격자 내부에서 FCM을 이용하여 군집화를 수행하고, 계속해서 이웃 격자의 군집결과에 대하여 군집간의 유사도 측도를 이용하여 군집 합병을 수행함으로써 데이터의 자연적인 구조에 근접한 군집화를 수행하였다. 제안된 군집화 합병 기법의 향상된 성능은 UCI Machine Learning Repository 데이터를 이용하여 확인하였다.

  • PDF

Similarity Pattern Analysis of Web Log Data using Multidimensional FCM (다차원 FCM을 이용한 웹 로그 데이터의 유사 패턴 분석)

  • 김미라;조동섭
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10d
    • /
    • pp.190-192
    • /
    • 2002
  • 데이터 마이닝(Data Mining)이란 저장된 많은 양의 자료로부터 통계적 수학적 분석방법을 이용하여 다양한 가치 있는 정보를 찾아내는 일련의 과정이다. 데이터 클러스터링은 이러한 데이터 마이닝을 위한 하나의 중요한 기법이다. 본 논문에서는 Fuzzy C-Means 알고리즘을 이용하여 웹 사용자들의 행위가 기록되어 있는 웹 로그 데이터를 데이터 클러스터링 하는 방법에 관하여 연구하고자 한다. Fuzzv C-Means 클러스터링 알고리즘은 각 데이터와 각 클러스터 중심과의 거리를 고려한 유사도 측정에 기초한 목적 함수의 최적화 방식을 사용한다. 웹 로그 데이터의 여러 필드 중에서 사용자 IP, 시간, 웹 페이지 필드를 WLDF(Web Log Data for FCM)으로 가공한 후, 다차원 Fuzzy C-Means 클러스터링을 한다. 그리고 이를 이용하여 샘플 데이터와 임의의 데이터간의 유사 패턴 분석을 하고자 한다.

  • PDF

Design of Fuzzy Neural Networks Based on Fuzzy Clustering and Its Application (퍼지 클러스터링 기반 퍼지뉴럴네트워크 설계 및 적용)

  • Park, Keon-Jun;Lee, Dong-Yoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.378-384
    • /
    • 2013
  • In this paper, we propose the fuzzy neural networks based on fuzzy c-means clustering algorithm. Typically, the generation of fuzzy rules have the problem that the number of fuzzy rules exponentially increases when the dimension increases. To solve this problem, the fuzzy rules of the proposed networks are generated by partitioning the input space in the scatter form using FCM clustering algorithm. The premise parameters of the fuzzy rules are determined by membership matrix by means of FCM clustering algorithm. The consequence part of the rules is expressed in the form of polynomial functions and the learning of fuzzy neural networks is realized by adjusting connections of the neurons, and it follows a back-propagation algorithm. The proposed networks are evaluated through the application to nonlinear process.

A Study On The Optimum Node Deployment In The Wireless Sensor Network System (무선 센서 네트워크의 최적화 노드배치에 관한 연구)

  • Choi, Weon-Gap;Park, Hyung-Moo
    • Journal of IKEEE
    • /
    • v.11 no.3
    • /
    • pp.100-107
    • /
    • 2007
  • One of the fundamental problems in wireless sensor networks is the efficient deployment of sensor nodes. The Fuzzy C-Means(FCM) clustering algorithm is proposed to determine the optimum location and minimum number of sensor nodes for the specific application space. We performed a simulation and a experiment using two rectangular and one L shape area. We found the minimum number of sensor nodes for the complete coverage of modeled area, and discovered the optimum location of each nodes. The real deploy experiment using sensor nodes shows the 94.6%, 92.2% and 95.7% error free communication rate respectively.

  • PDF

Gaussian Weighted CFCM for Blind Equalization of Linear/Nonlinear Channel

  • Han, Soo-Whan
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.14 no.3
    • /
    • pp.169-180
    • /
    • 2013
  • The modification of conditional Fuzzy C-Means (CFCM) with Gaussian weights (CFCM_GW) is accomplished for blind equalization of channels in this paper. The proposed CFCM_GW can deal with both of linear and nonlinear channels, because it searches for the optimal desired states of an unknown channel in a direct manner, which is not dependent on the type of channel structure. In the search procedure of CFCM_GW, the Bayesian likelihood fitness function, the Gaussian weighted partition matrix and the conditional constraint are exploited. Especially, in contrast to the common Euclidean distance in conventional Fuzzy C-Means(FCM), the Gaussian weighted partition matrix and the conditional constraint in the proposed CFCM_GW make it more robust to the heavy noise communication environment. The selected channel states by CFCM_GW are always close to the optimal set of a channel even when the additive white Gaussian noise (AWGN) is heavily corrupted. These given channel states are utilized as the input of the Bayesian equalizer to reconstruct transmitted symbols. The simulation studies demonstrate that the performance of the proposed method is relatively superior to those of the existing conventional FCM based approaches in terms of accuracy and speed.

A Study on Effective Selection of University Lecture Evaluation (대학 강의평가에서 문항 추출에 관한 연구)

  • Hwang Se-Myung;Kim In-Taek
    • Journal of Engineering Education Research
    • /
    • v.8 no.1
    • /
    • pp.31-45
    • /
    • 2005
  • In this paper, selecting survey items was performed using three clustering methods: factor analysis, fuzzy c-Means algorithm and cluster analysis. The methods were used to extract key items from various questionnaires. The key item represents several similar questionnaires that form a cluster. Test survey was made of 120 items obtained from several surveys and it was answered by 646 students from 4 universities. Each item contains 6 choices. Applying the clustering method chose 25 items which is reduced from the original 120 items. The results yielded by three methods are very similar.

Improved FCM Clustering Image Segmentation (개선된 FCM 클러스터링 영상 분할)

  • Lee, Kwang-Kyug
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.127-131
    • /
    • 2020
  • Fuzzy C-Means(FCM) algorithm is frequently used as a representative image segmentation method using clustering. FCM divides the image space into cluster regions with similar pixel values, which requires a lot of segmentation time. In particular, the processing speed problem for analyzing various patterns of the current users of the web is more important. To solve this speed problem, this paper proposes an improved FCM (Improved FCM : IFCM) algorithm for segmenting the image into the Otsu threshold and FCM. In the proposed method, the threshold that maximizes the variance between classes of Otsu is determined, applied to the FCM, and the image is segmented. Experiments show that IFCM improves performance by shortening image segmentation time compared to conventional FCM.

Bayesian Nonlinear Blind Channel Equalizer based on Gaussian Weighted MFCM

  • Han, Soo-Whan;Park, Sung-Dae;Lee, Jong-Keuk
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.12
    • /
    • pp.1625-1634
    • /
    • 2008
  • In this study, a modified Fuzzy C-Means algorithm with Gaussian weights (MFCM_GW) is presented for the problem of nonlinear blind channel equalization. The proposed algorithm searches for the optimal channel output states of a nonlinear channel based on received symbols. In contrast to conventional Euclidean distance in Fuzzy C-Means (FCM), the use of the Bayesian likelihood fitness function and the Gaussian weighted partition matrix is exploited in this method. In the search procedure, all possible sets of desired channel states are constructed by considering the combinations of estimated channel output states. The set of desired states characterized by the maxima] value of the Bayesian fitness is selected and updated by using the Gaussian weights. After this procedure, the Bayesian equalizer with the final desired states is implemented to reconstruct transmitted symbols. The performance of the proposed method is compared with those of a simplex genetic algorithm (GA), a hybrid genetic algorithm (GA merged with simulated annealing (SA):GASA), and a previously developed version of MFCM. In particular, a relative]y high accuracy and a fast search speed have been observed.

  • PDF

A hybrid algorithm for classifying rock joints based on improved artificial bee colony and fuzzy C-means clustering algorithm

  • Ji, Duofa;Lei, Weidong;Chen, Wenqin
    • Geomechanics and Engineering
    • /
    • v.31 no.4
    • /
    • pp.353-364
    • /
    • 2022
  • This study presents a hybrid algorithm for classifying the rock joints, where the improved artificial bee colony (IABC) and the fuzzy C-means (FCM) clustering algorithms are incorporated to take advantage of the artificial bee colony (ABC) algorithm by tuning the FCM clustering algorithm to obtain the more reasonable and stable result. A coefficient is proposed to reduce the amount of blind random searches and speed up convergence, thus achieving the goals of optimizing and improving the ABC algorithm. The results from the IABC algorithm are used as initial parameters in FCM to avoid falling to the local optimum in the local search, thus obtaining stable classifying results. Two validity indices are adopted to verify the rationality and practicability of the IABC-FCM algorithm in classifying the rock joints, and the optimal amount of joint sets is obtained based on the two validity indices. Two illustrative examples, i.e., the simulated rock joints data and the field-survey rock joints data, are used in the verification to check the feasibility and practicability in rock engineering for the proposed algorithm. The results show that the IABC-FCM algorithm could be applicable in classifying the rock joint sets.

Combining Hough Transform and Fuzzy Unsupervised Learning Strategy in Automatic Segmentation of Large Bowel Obstruction Area from Erect Abdominal Radiographs

  • Kwang Baek Kim;Doo Heon Song;Hyun Jun Park
    • Journal of information and communication convergence engineering
    • /
    • v.21 no.4
    • /
    • pp.322-328
    • /
    • 2023
  • The number of senior citizens with large bowel obstruction is steadily growing in Korea. Plain radiography was used to examine the severity and treatment of this phenomenon. To avoid examiner subjectivity in radiography readings, we propose an automatic segmentation method to identify fluid-filled areas indicative of large bowel obstruction. Our proposed method applies the Hough transform to locate suspicious areas successfully and applies the possibilistic fuzzy c-means unsupervised learning algorithm to form the target area in a noisy environment. In an experiment with 104 real-world large-bowel obstruction radiographs, the proposed method successfully identified all suspicious areas in 73 of 104 input images and partially identified the target area in another 21 images. Additionally, the proposed method shows a true-positive rate of over 91% and false-positive rate of less than 3% for pixel-level area formation. These performance evaluation statistics are significantly better than those of the possibilistic c-means and fuzzy c-means-based strategies; thus, this hybrid strategy of automatic segmentation of large bowel suspicious areas is successful and might be feasible for real-world use.