• 제목/요약/키워드: Fuzzy C-Means Clustering(FCM)

검색결과 161건 처리시간 0.024초

Multiobjective Space Search Optimization and Information Granulation in the Design of Fuzzy Radial Basis Function Neural Networks

  • Huang, Wei;Oh, Sung-Kwun;Zhang, Honghao
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권4호
    • /
    • pp.636-645
    • /
    • 2012
  • This study introduces an information granular-based fuzzy radial basis function neural networks (FRBFNN) based on multiobjective optimization and weighted least square (WLS). An improved multiobjective space search algorithm (IMSSA) is proposed to optimize the FRBFNN. In the design of FRBFNN, the premise part of the rules is constructed with the aid of Fuzzy C-Means (FCM) clustering while the consequent part of the fuzzy rules is developed by using four types of polynomials, namely constant, linear, quadratic, and modified quadratic. Information granulation realized with C-Means clustering helps determine the initial values of the apex parameters of the membership function of the fuzzy neural network. To enhance the flexibility of neural network, we use the WLS learning to estimate the coefficients of the polynomials. In comparison with ordinary least square commonly used in the design of fuzzy radial basis function neural networks, WLS could come with a different type of the local model in each rule when dealing with the FRBFNN. Since the performance of the FRBFNN model is directly affected by some parameters such as e.g., the fuzzification coefficient used in the FCM, the number of rules and the orders of the polynomials present in the consequent parts of the rules, we carry out both structural as well as parametric optimization of the network. The proposed IMSSA that aims at the simultaneous minimization of complexity and the maximization of accuracy is exploited here to optimize the parameters of the model. Experimental results illustrate that the proposed neural network leads to better performance in comparison with some existing neurofuzzy models encountered in the literature.

빅 데이터 처리를 위한 증분형 FCM 기반 순환 RBF Neural Networks 패턴 분류기 설계 (Design of Incremental FCM-based Recursive RBF Neural Networks Pattern Classifier for Big Data Processing)

  • 이승철;오성권
    • 전기학회논문지
    • /
    • 제65권6호
    • /
    • pp.1070-1079
    • /
    • 2016
  • In this paper, the design of recursive radial basis function neural networks based on incremental fuzzy c-means is introduced for processing the big data. Radial basis function neural networks consist of condition, conclusion and inference phase. Gaussian function is generally used as the activation function of the condition phase, but in this study, incremental fuzzy clustering is considered for the activation function of radial basis function neural networks, which could effectively do big data processing. In the conclusion phase, the connection weights of networks are given as the linear function. And then the connection weights are calculated by recursive least square estimation. In the inference phase, a final output is obtained by fuzzy inference method. Machine Learning datasets are employed to demonstrate the superiority of the proposed classifier, and their results are described from the viewpoint of the algorithm complexity and performance index.

Fuzzy system construction based on Genetic Algorithms and fuzzy clustering

  • Kwak, Keun-Chang;Kim, Seoung-Suk;Ryu, Jeong-Woong;Chun, Myung-Geun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.109.6-109
    • /
    • 2002
  • In this paper, the scheme of fuzzy system construction using GA(genetic algorithm) and FCM(Fuzzy c-means) clustering algorithm is proposed for TSK(Takagi-Sugeno-Kang) type fuzzy system. in the structure identification, input data is trans-formed by PCA(Principal Component Analysis) to reduce the correlation among input data components. And then, the number of fuzzy rule is obtained by a given performance criterion. In the parameter identification, the premise parameters are optimally searched by GA. On the other hand, the consequent parameters are estimated by RLSE(Recursive Least Square Estimate) to reduce the search space. From this, one can systematically obtain optimal parameter and the v..

  • PDF

쾌 및 각성차원 기반 얼굴 표정인식 (Facial expression recognition based on pleasure and arousal dimensions)

  • 신영숙;최광남
    • 인지과학
    • /
    • 제14권4호
    • /
    • pp.33-42
    • /
    • 2003
  • 본 논문은 내적상태의 차원모형을 기반으로 한 얼굴 표정인식을 위한 새로운 시스템을 제시한다. 얼굴표정 정보는 3단계로 추출된다. 1단계에서는 Gabor 웨이브렛 표상이 얼굴 요소들의 경계선을 추출한다. 2단계에서는 중립얼굴상에서 얼굴표정의 성긴 특징들이 FCM 군집화 알고리즘을 사용하여 추출된다. 3단계에서는 표정영상에서 동적인 모델을 사용하여 성긴 특징들이 추출된다. 마지막으로 다층 퍼셉트론을 사용하여 내적상태의 차원모델에 기반한 얼굴표정 인식을 보인다. 정서의 이차원 구조는 기본 정서와 관련된 얼굴표정의 인식 뿐만 아니라 다양한 정서의 표정들로 인식할 수 있음을 제시한다.

  • PDF

EM 알고리즘에 의한 뉴로-퍼지 시스템의 퍼지 규칙 생성 (Fuzzy rule Extraction of Neuro-Fuzzy System using EM algorithm)

  • 김승석;곽근창;유정웅;전명근
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2002년도 춘계학술대회 및 임시총회
    • /
    • pp.170-173
    • /
    • 2002
  • 본 논문에서는 여러 분야에서 널리 응용되고 있는 적응 뉴로-퍼지 시스템(ANFIS)에서의 효과적인 퍼지 규칙 생성방법을 제안한다. ANFIS의 성능 개선을 위해 구조동정을 수행함에 있어서 전제부 파라미터는 EM(Expectation-Maximization) 알고리즘을 적용하였으며, 파라미터학습은 Jang에 의한 하이브리드 방법을 적용한다. 여기서 초기의 중심과 분산을 구하기 위해 FCM(Fuzzy c-means) 클러스터링 기법을 사용하였다. 이렇게 함으로서 적은 규칙 수를 가지면서도 효율적인 퍼지 규칙을 얻을 수 있도록 하였다. 이들 방법의 유용함을 보이고자 Box-Jenkins의 가스로 데이터에 적용하여 제안된 방법이 이전의 연구보다 좋은 결과를 보임을 보이고자 한다

  • PDF

Classification of Fuzzy Logic on the Optimized Bead Geometry in the Gas Metal Arc Welding

  • Yu Xue;Kim, Ill-Soo;Park, Chang-Eun;Kim, In-Ju;Son, Joon-Sik
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 추계학술대회 논문집
    • /
    • pp.225-232
    • /
    • 2004
  • Recently, there has been a rapid development in computer technology, which has in turn led to develop the automated welding system using Artificial Intelligence (AI). However, the automated welding system has not been achieved duo to difficulties of the control and sensor technologies. In this paper, the classification of the optimized bead geometry such as bead width, height penetration and bead area in the Gas Metal Arc (GMA) welding with fuzzy logic is presented. The fuzzy C-Means algorithm (FCM), which is best known an unsupervised fuzzy clustering algorithm is employed here to analysis the specimen of the bead geometry. Then the quality of the GMA welding can be classified by this fuzzy clustering technique and the choice for obtaining the optimal bead geometry can also be determined.

  • PDF

무선 센서 네트워크의 최적화 노드배치에 관한 연구 (A Study On The Optimum Node Deployment In The Wireless Sensor Network System)

  • 최원갑;박형무
    • 전기전자학회논문지
    • /
    • 제11권3호
    • /
    • pp.100-107
    • /
    • 2007
  • 무선 센서 네트워크에서 중요한 문제 중 하나는 센서 노드들의 최적 배치, 즉 측정하고자 하는 지역을 모두 커버할 수 있는 최소 센서 노드 수를 산출하고 배치 위치를 결정하는 일이다. 본 논문에서는 이러한 문제를 해결하기 위한 방법으로 제안한 Fuzzy C-Means 클러스터링을 이용하여 측정하고자 하는 지역에서의 최적의 노드 배치와 최소 노드의 수를 시뮬레이션을 통해 도출하였고, 실험을 통하여 검증하였다. 시뮬레이션은 3가지 타입의 2차원 지역을 모델로 하여 수행하였다. 모델링한 지역은 6M${\times}$10M의 직사각형, 50M${\times}$20M의 직사각형, 100M${\times}$80M의 ‘L’ 자 형태의 지역으로 하였으며, 각각 9개, 9개, 15개 노드의 위치를 결정하였다. 실제 실험결과 각 지역에 대해서 94.6%, 92.2%, 95.7%의 정확도를 가진 통신 연결을 확인할 수 있었다.

  • PDF

FCM 기반 추정 가속도 보상을 이용한 기동표적 추적기법 설계 (Designing Tracking Method using Compensating Acceleration with FCM for Maneuvering Target)

  • 손현승;박진배;주영훈
    • 전자공학회논문지SC
    • /
    • 제49권3호
    • /
    • pp.82-89
    • /
    • 2012
  • 본 논문에서는 기동표적의 위치오차에서 구해지는 가속도를 보상하는 지능형 추적 알고리즘을 소개한다. 관측치와 예상위치와의 차이값은 가속도와 순수잡음으로 분리된다. 이때, 최적의 가속도를 얻기 위하여 퍼지 c-means 클러스터링 기법과 예상명중위치기법이 이용되었다. 분리된 가속도와 잡음에 대한 퍼지 이론의 멤버쉽 함수를 결정되고, 이에 따라 기동표적의 기동특성이 인식되어진다. 분리된 가속도와 잡음은 추적 알고리즘 내에서 추정된 오차값을 보상하는데 이용된다. 표적의 추정값을 계산하는 일련의 과정중 필터링 과정은 기동표적의 비선형성을 선형성으로 인식하게 된다. 이것은 필터가 위치오차에서 가속도를 추출하여 남겨진 잡음만을 인식하기 때문이다. 필터링 과정 이후 추출된 가속도를 보상하여 표적의 추정값을 구해낸다. 제안된 기법은 퍼지 시스템의 멤버쉽 함수에서 파라미터를 조절하여 적응성과 강인성을 향상 시켰다. 제안된 시스템의 효율성을 극대화하기 위하여 제안된 기법을 다중모델 구조로 형성한다. 또한 제안된 기법은 온라인 시스템으로서의 수행이 가능하다. 마지막으로 제안된 알고리즘의 효율성을 보여주기 위하여 몇 가지 예를 추가하였다.

퍼지 클러스터링을 이용한 심전도 신호의 라벨링에 관한 연구 (A Study on Labeling of ECG Signal using Fuzzy Clustering)

  • 공인욱;이정환;이상학;최석준;이명호
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1996년도 추계학술대회
    • /
    • pp.118-121
    • /
    • 1996
  • This paper describes ECG signal labeling based on Fuzzy clustering, which is necessary at automated ECG diagnosis. The NPPA(Non parametric partitioning algorithm) compares the correlations of wave forms, which tends to recognize the same wave forms as different when the wave forms have a little morphological variation. We propose to apply Fuzzy clustering to ECG QRS Complex labeling, which prevents the errors to mistake by using If-then comparision. The process is divided into two parts. The first part is a parameters extraction process from ECG signal, which is composed of filtering, QRS detection by mapping to a phase space by time delay coordinates and generation of characteristic vectors. The second is fuzzy clustering by FCM(Fuzzy c-means), which is composed of a clustering, an assessment of cluster validity and labeling.

  • PDF

Blind Channel Equalization Using Conditional Fuzzy C-Means

  • Han, Soo-Whan
    • 한국멀티미디어학회논문지
    • /
    • 제14권8호
    • /
    • pp.965-980
    • /
    • 2011
  • In this paper, the use of conditional Fuzzy C-Means (CFCM) aimed at estimation of desired states of an unknown digital communication channel is investigated for blind channel equalization. In the proposed CFCM, a collection of clustered centers is treated as a set of pre-defined desired channel states, and used to extract channel output states. By considering the combinations of the extracted channel output states, all possible sets of desired channel states are constructed. The set of desired states characterized by the maximal value of the Bayesian fitness function is subsequently selected for the next fuzzy clustering epoch. This modification of CFCM makes it possible to search for the optimal desired channel states of an unknown channel. Finally, given the desired channel states, the Bayesian equalizer is implemented to reconstruct transmitted symbols. In a series of simulations, binary signals are generated at random with Gaussian noise, and both linear and nonlinear channels are evaluated. The experimental studies demonstrate that the performance (being expressed in terms of accuracy and speed) of the proposed CFCM is superior to the performance of the existing method exploiting the "conventional" Fuzzy C-Means (FCM).