• Title/Summary/Keyword: Future climate change

검색결과 1,455건 처리시간 0.03초

기후변화로 인한 고온의 미래 사망부담 추정 (Estimation of Future Death Burden of High Temperatures from Climate Change)

  • 양지훈;하종식
    • 한국환경보건학회지
    • /
    • 제39권1호
    • /
    • pp.19-31
    • /
    • 2013
  • Objectives: Elevated temperatures during summer months have been reported since the early 20th century to be associated with increased daily mortality. However, future death impacts of high temperatures resulting from climate change could be variously estimated in consideration of the future changes in historical temperature-mortality relationships, mortality, and population. This study examined the future death burden of high temperatures resulting from climate change in Seoul over the period of 2001-2040. Methods: We calculated yearly death burden attributable to high temperatures stemming from climate change in Seoul from 2001-2040. These future death burdens from high temperature were computed by multiplying relative risk, temperature, mortality, and population at any future point. To incorporate adaptation, we assumed future changes in temperature-mortality relationships (i.e. threshold temperatures and slopes), which were estimated as short-term temperature effects using a Poisson regression model. Results: The results show that climate change will lead to a substantial increase in summer high temperature-related death burden in the future, even considering adaptation by the population group. The yearly death burden attributable to elevated temperatures ranged from approximately 0.7 deaths per 100,000 people in 2001-2010 to about 1.5 deaths per 100,000 people in Seoul in 2036-2040. Conclusions: This study suggests that adaptation strategies and communication regarding future health risks stemming from climate change are necessary for the public and for the political leadership of South Korea.

미래 기후변화를 고려한 GIS 기반의 댐유역 유사량 평가 (The Evaluation of Sediment Yield of Dam-basin considering Future Climate Change in GIS Environment)

  • 이근상;최연웅;조기성
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2010년 춘계학술발표회 논문집
    • /
    • pp.383-385
    • /
    • 2010
  • This study analyzed the change of flowout and suspend solid in Andong and Imha basin according to the climate change to develop evaluation index about turbid water occurrence possibility and to support the countermeasures for turbid water management using GIS-based Soil and Water Assessment Tools (SWAT). MIROC3.2 hires model values of A1B climate change scenario that were supplied by Intergovernmental Panel on Climate Change (IPCC) were applied to future climage change data. Precipitation and temperature were corrected by applying the output value of 20th Century Climate Coupled Model (20C3M) based on past climate data during 1977 and 2006 and downscaled with Change Factor (CF) method. And future climate change scenarios were classified as three periods (2020s, 2050s, 2080s) and the change of flowout and suspended solid according to the climate change were estimated by coupling modeled value with SWAT model.

  • PDF

기후학적 물수지를 적용한 기후변화에 따른 농업기상지표 변동예측의 불확실성 (Uncertainty Characteristics in Future Prediction of Agrometeorological Indicators using a Climatic Water Budget Approach)

  • 남원호;홍은미;최진용;조재필
    • 한국농공학회논문집
    • /
    • 제57권2호
    • /
    • pp.1-13
    • /
    • 2015
  • The Coupled Model Intercomparison Project Phase 5 (CMIP5), coordinated by the World Climate Research Programme in support of the Intergovernmental Panel on Climate Change (IPCC) AR5, is the most recent, provides projections of future climate change using various global climate models under four major greenhouse gas emission scenarios. There is a wide selection of climate models available to provide projections of future climate change. These provide for a wide range of possible outcomes when trying to inform managers about possible climate changes. Hence, future agrometeorological indicators estimation will be much impacted by which global climate model and climate change scenarios are used. Decision makers are increasingly expected to use climate information, but the uncertainties associated with global climate models pose substantial hurdles for agricultural resources planning. Although it is the most reasonable that quantifying of the future uncertainty using climate change scenarios, preliminary analysis using reasonable factors for selecting a subset for decision making are needed. In order to narrow the projections to a handful of models that could be used in a climate change impact study, we could provide effective information for selecting climate model and scenarios for climate change impact assessment using maximum/minimum temperature, precipitation, reference evapotranspiration, and moisture index of nine Representative Concentration Pathways (RCP) scenarios.

기후변화에 따른 홍수기 논의 저류능 변화 분석 (Impact of Climate Change on Paddy Water Storage During Storm Periods)

  • 박근애;박종윤;신형진;박민지;김성준
    • 한국농공학회논문집
    • /
    • 제52권6호
    • /
    • pp.27-37
    • /
    • 2010
  • The effect of potential future climate change on the storage rate of paddy field during storm periods (June - September) was assessed using the daily paddy water balance model. The CCCma CGCM2 data by SRES (special report on emissions scenarios) A2 and B2 scenarios of the IPCC (intergovernmental panel on climate change) was used to assess the future potential climate change. The future weather data for the year 2020s, 2050s and 2080s was downscaled by Change Factor method through bias-correction using 30 years weather data. The future (2020s, 2050s and 2080s) rainfall, storage and irrigation of paddy field, runoff in paddy levee and ponding depth were analyzed for the A2 and B2 climate change scenarios based on a base year (2005). The future irrigation change of paddy field was projected to increase by decrease in rainfall. So, runoff change in paddy levee was decrease slightly, future storage change of paddy was projected to increase.

기후변화 시나리오를 고려한 농업용 저수지의 미래 용수공급 지속가능성 전망 (Projection of Future Water Supply Sustainability in Agricultural Reservoirs under RCP Climate Change Scenarios)

  • 남원호;홍은미;김태곤;최진용
    • 한국농공학회논문집
    • /
    • 제56권4호
    • /
    • pp.59-68
    • /
    • 2014
  • Climate change influences multiple environmental aspects, certain of which are specifically related to agricultural water resources such as water supply, water management, droughts and floods. Understanding the impact of climate change on reservoirs in relation to the passage of time is an important component of water resource management for stable water supply maintenance. Changes on rainfall and hydrologic patterns due to climate change can increases the occurrence of reservoir water shortage and affect the future availability of agricultural water resources. It is a main concern for sustainable development in agricultural water resources management to evaluate adaptation capability of water supply under the future climate conditions. The purpose of this study is to predict the sustainability of agricultural water demand and supply under future climate change by applying an irrigation vulnerability assessment model to investigate evidence of climate change occurrences at a local scale with respect to potential water supply capacity and irrigation water requirement. Thus, it is a recommended practice in the development of water supply management strategies on reservoir operation under climate change.

GCM 및 상세화 기법 선정을 고려한 충주댐 유입량 기후변화 영향 평가 (Future Climate Change Impact Assessment of Chungju Dam Inflow Considering Selection of GCMs and Downscaling Technique)

  • 김철겸;박지훈;조재필
    • 한국기후변화학회지
    • /
    • 제9권1호
    • /
    • pp.47-58
    • /
    • 2018
  • In this study, we evaluated the uncertainty in the process of selecting GCM and downscaling method for assessing the impact of climate change, and influence of user-centered climate change information on reproducibility of Chungju Dam inflow was analyzed. First, we selected the top 16 GCMs through the evaluation of spatio-temporal reproducibility of 29 raw GCMs using 30-year average of 10-day precipitation without any bias-correction. The climate extreme indices including annual total precipitation and annual maximum 1-day precipitation were selected as the relevant indices to the dam inflow. The Simple Quantile Mapping (SQM) downscaling method was selected through the evaluation of reproducibility of selected indices and spatial correlation among weather stations. SWAT simulation results for the past 30 years period by considering limitations in weather input showed the satisfactory results with monthly model efficiency of 0.92. The error in average dam inflow according to selection of GCMs and downscaling method showed the bests result when 16 GCMs selected raw GCM analysi were used. It was found that selection of downscaling method rather than selection of GCM is more is important in overall uncertainties. The average inflow for the future period increased in all RCP scenarios as time goes on from near-future to far-future periods. Also, it was predicted that the inflow volume will be higher in the RCP 8.5 scenario than in the RCP 4.5 scenario in all future periods. Maximum daily inflow, which is important for flood control, showed a high changing rate more than twice as much as the average inflow amount. It is also important to understand the seasonal fluctuation of the inflow for the dam management purpose. Both average inflow and maximum inflow showed a tendency to increase mainly in July and August during near-future period while average and maximum inflows increased through the whole period of months in both mid-future and far-future periods.

기후변화대응을 위한 문화유산 교육과정 개발 방안 연구 (A Study on the Curriculum Development for Climate Change and Cultural Heritage)

  • 노경민
    • 건축역사연구
    • /
    • 제32권3호
    • /
    • pp.39-51
    • /
    • 2023
  • This study aims to develop a cultural heritage curriculum for climate change and present educational directions for cultural heritage and climate change impact in the future. In this study, the role and necessity of cultural heritage education for climate change were first discussed based on previous studies on climate change and cultural heritage. Next, the current status analysis of educational cases related to climate change and cultural heritage was conducted based on educational manuals, curriculum, and heritage competency systems associated with climate change. Finally, we propose a plan to develop a curriculum to cope with climate change and cultural heritage for graduate students in higher education institutions based on the four components of developing a curriculum. In future studies, we intend to propose guidelines for designing educational manuals and specific curricula for each educational target to cope with the climate change of cultural heritage presented in this study.

미래 기후변화에 따른 농업용 저수지 용수공급의 불확실성 (Uncertainty of Water Supply in Agricultural Reservoirs Considering the Climate Change)

  • 남원호;홍은미;최진용
    • 한국농공학회논문집
    • /
    • 제56권2호
    • /
    • pp.11-23
    • /
    • 2014
  • The impact and adaption on agricultural water resources considering climate change is significant for reservoirs. The change in rainfall patterns and hydrologic factors due to climate change increases the uncertainty of agricultural water supply and demand. The quantitative evaluation method of uncertainty based on agricultural water resource management under future climate conditions is a major concern. Therefore, it is necessary to improve the vulnerability management technique for agricultural water supply based on a probabilistic and stochastic risk evaluation theory. The objective of this study was to analyse the uncertainty of water resources under future climate change using probability distribution function of water supply in agricultural reservoir and demand in irrigation district. The uncertainty of future water resources in agricultural reservoirs was estimated using the time-specific analysis of histograms and probability distributions parameter, for example the location and the scale parameter. According to the uncertainty analysis, the future agricultural water supply and demand in reservoir tends to increase the uncertainty by the low consistency of the results. Thus, it is recommended to prepare a resonable decision making on water supply strategies in terms of using climate change scenarios that reflect different future development conditions.

기후변화에 따른 강수 특성 변화 분석을 위한 대규모 기후 앙상블 모의자료 적용 (Application of the Large-scale Climate Ensemble Simulations to Analysis on Changes of Precipitation Trend Caused by Global Climate Change)

  • 김영규;손민우
    • 대기
    • /
    • 제32권1호
    • /
    • pp.1-15
    • /
    • 2022
  • Recently, Japan's Meteorological Research Institute presented the d4PDF database (Database for Policy Decision-Making for Future Climate Change, d4PDF) through large-scale climate ensemble simulations to overcome uncertainty arising from variability when the general circulation model represents extreme-scale precipitation. In this study, the change of precipitation characteristics between the historical and future climate conditions in the Yongdam-dam basin was analyzed using the d4PDF data. The result shows that annual mean precipitation and seasonal mean precipitation increased by more than 10% in future climate conditions. This study also performed an analysis on the change of the return period rainfall. The annual maximum daily rainfall was extracted for each climatic condition, and the rainfall with each return period was estimated. In this process, we represent the extreme-scale rainfall corresponding to a very long return period without any statistical model and method as the d4PDF provides rainfall data during 3,000 years for historical climate conditions and during 5,400 years for future climate conditions. The rainfall with a 50-year return period under future climate conditions exceeded the rainfall with a 100-year return period under historical climate conditions. Consequently, in future climate conditions, the magnitude of rainfall increased at the same return period and, the return period decreased at the same magnitude of rainfall. In this study, by using the d4PDF data, it was possible to analyze the change in extreme magnitude of rainfall.

기후 변화에 따른 제주도 표선 유역의 함양률 및 수위변화 예측 (Impact of Climate Change on the Groundwater Recharge and Groundwater Level Variations in Pyoseon Watershed of Jeju Island, Korea)

  • 신에스더;고은희;하규철;이은희;이강근
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제21권6호
    • /
    • pp.22-35
    • /
    • 2016
  • Global climate change could have an impact on hydrological process of a watershed and result in problems with future water supply by influencing the recharge process into the aquifer. This study aims to assess the change of groundwater recharge rate by climate change and to predict the sustainability of groundwater resource in Pyoseon watershed, Jeju Island. For the prediction, the groundwater recharge rate of the study area was estimated based on two future climate scenarios (RCP 4.5, RCP 8.5) by using the Soil Water Balance (SWB) computer code. The calculated groundwater recharge rate was used for groundwater flow simulation and the change of groundwater level according to the climate change was predicted using a numerical simulation program (FEFLOW 6.1). The average recharge rate from 2020 to 2100 was predicted to decrease by 10~12% compared to the current situation (1990~2015) while the evapotranspiration and the direct runoff rate would increase at both climate scenarios. The decrease in groundwater recharge rate due to the climate change results in the decline of groundwater level. In some monitoring wells, the predicted mean groundwater level at the year of the lowest water level was estimated to be lower by 60~70 m than the current situation. The model also predicted that temporal fluctuation of groundwater recharge, runoff and evapotranspiration would become more severe as a result of climate change, making the sustainable management of water resource more challenging in the future. Our study results demonstrate that the future availability of water resources highly depends on climate change. Thus, intensive studies on climate changes and water resources should be performed based on the sufficient data, advanced climate change scenarios, and improved modeling methodology.