• Title/Summary/Keyword: Future MS

Search Result 216, Processing Time 0.022 seconds

Regeneration and selection of root resistant Coleus forskohlii A threatened medicinal plant

  • George, Manju M.;Ssubramanian, R.B.;Prajapati, Hiren A.
    • Plant Resources
    • /
    • v.4 no.2
    • /
    • pp.65-74
    • /
    • 2001
  • Coleus forskohlii Briq, of the family Lamiaceae yields a valuable secondary metabolity known as forskolin which is a labdane diterpenoid.. Coleus forskohlii is the only known source of this compound. Forskolin is used in medicine for the treatment of glaucoma, congestive cardiomyopathy and asthma. Morphogenic callus was induced from young leaves on MS medium augmented with NAA and BA. These calli, when subcultured on MS with KN alone gave rise to shoots. The regenerated shoot developed good root system on MS medium fortified with NAA. The fully grown plantlets were transferred to soil for acclimatization. Coleus plant is mainly infected by a fungi Lasiodiplodia theobromae which causes root rot disease. The fungal culture filterate (ECE) of Lasiodiplodia theobromae, has been used in regeneration media to find the MIC and further to select resistant plants to the pathogen. In the present study 40% ECF in the medium showed maximum inhibition and is there fore considered as the MIC level of Coleus forshohlii. This data could prove to be useful for the future for selecting a resistant C.forskohlii plant against the root disease caused by L. theobromae.

  • PDF

Comprehensive Analysis of Proteomic Differences between Escherichia coli K-12 and B Strains Using Multiplexed Isobaric Tandem Mass Tag (TMT) Labeling

  • Han, Mee-Jung
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.11
    • /
    • pp.2028-2036
    • /
    • 2017
  • The Escherichia coli K-12 and B strains are among the most frequently used bacterial hosts for scientific research and biotechnological applications. However, omics analyses have revealed that E. coli K-12 and B exhibit notably different genotypic and phenotypic attributes, even though they were derived from the same ancestor. In a previous study, we identified a limited number of proteins from the two strains using two-dimensional gel electrophoresis and tandem mass spectrometry (MS/MS). In this study, an in-depth analysis of the physiological behavior of the E. coli K-12 and B strains at the proteomic level was performed using six-plex isobaric tandem mass tag-based quantitative MS. Additionally, the best lysis buffer for increasing the efficiency of protein extraction was selected from three tested buffers prior to the quantitative proteomic analysis. This study identifies the largest number of proteins in the two E. coli strains reported to date and is the first to show the dynamics of these proteins. Notable differences in proteins associated with key cellular properties, including some metabolic pathways, the biosynthesis and degradation of amino acids, membrane integrity, cellular tolerance, and motility, were found between the two representative strains. Compared with previous studies, these proteomic results provide a more holistic view of the overall state of E. coli cells based on a single proteomic study and reveal significant insights into why the two strains show distinct phenotypes. Additionally, the resulting data provide in-depth information that will help fine-tune processes in the future.

Regeneration and selection of root rot resistant Coleus forskohlii A threatened medicinal plant

  • M.George, Manju;Subramanian, R.B.;A.Prajapati, Hiren
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.96-113
    • /
    • 2000
  • Coleus forskohlii Briq. of the family Lamiaceae yields a valuable secondary metabolite known as forskolin which is a labdane diterpenoid. Coleus forskohlii is the only known source of this compound. Forskolin is used in medicine for the treatment of glaucoma, congestive cardiomyopathy and asthma. Morphogenic callus was induced from young leaves on MS medium augmented with NAA and BA. These calli, when subcultured on MS with KN alone gave rise to shoots. The regenerated shoot developed good root system on MS medium fortified with NAA. The fully grown plantlets were transferred to soil for acclimatization. Coleus plant is mainly infected by a fungi Lasiodiplodia theobromae which causes root of disease. The fungal culture filterate (FCF) of Lasiodiplodia theobromae, has been used in regeneration media to find the MIC and further to select resistant plants to the pathogen. In the present study 40% FCF in the medium showed maximum inhibition and is there fore considered as the MIC level of Coleus forskohlii. This data could prove to be useful for the future for selecting a resistant C,forskohlii plant against the root disease caused by L.theobromae.

  • PDF

GC-MS Analysis of Amur Cork Tree Extract and Its Degradation Products

  • Ahn, Cheun-Soon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.34 no.6
    • /
    • pp.1042-1052
    • /
    • 2010
  • The Degradation of amur cork tree extract is investigated by GC-MS after treating the dye with three thermal degradation systems of, room temperature (RT), $4^{\circ}C$ refrigeration (LT), $100^{\circ}C$ oven (OV), and $H_2O_2$/UV/$O_2$ (PER) degradation system for 0-24 days. It was found that PER degradation system represented the highest intensity of degradation treatment followed by OV treatment among the four degradation parameters. The possible fingerprint products of amur cork tree dye, that yielded 68% (or higher) reliability in the NIST spectral match, were isobenzofuran-1,3-dione,4,5-dimethoxy- (8.37 min, PER only), 1,3-dioxolo[4,5-g]isoquinolin-5(6H)-one,7,8-dihydro (9.41 min, PER only), canthine-6-one (10.24 min, RT, LT, OV only), and dihydroberberine (15.05 min, RT, LT, OV, PER) in the order of higher to lower possibility of detection. Unknown products 7 (13.43 min) and 8 (16.35 min) are two other possible fingerprint products of amur cork tree dye that require future identification.

New approach of using cortico-cortical evoked potential for functional brain evaluation

  • Jo, Hyunjin;Kim, Dongyeop;Song, Jooyeon;Seo, Dae-Won
    • Annals of Clinical Neurophysiology
    • /
    • v.23 no.2
    • /
    • pp.69-81
    • /
    • 2021
  • Cortico-cortical evoked potential (CCEP) mapping is a rapidly developing method for visualizing the brain network and estimating cortical excitability. The CCEP comprises the early N1 component the occurs at 10-30 ms poststimulation, indicating anatomic connectivity, and the late N2 component that appears at < 200 ms poststimulation, suggesting long-lasting effective connectivity. A later component at 200-1,000 ms poststimulation can also appear as a delayed response in some studied areas. Such delayed responses occur in areas with changed excitability, such as an epileptogenic zone. CCEP mapping has been used to examine the brain connections causally in functional systems such as the language, auditory, and visual systems as well as in anatomic regions including the frontoparietal neocortices and hippocampal limbic areas. Task-based CCEPs can be used to measure behavior. In addition to evaluations of the brain connectome, single-pulse electrical stimulation (SPES) can reflect cortical excitability, and so it could be used to predict a seizure onset zone. CCEP brain mapping and SPES investigations could be applied both extraoperatively and intraoperatively. These underused electrophysiologic tools in basic and clinical neuroscience might be powerful methods for providing insight into measures of brain connectivity and dynamics. Analyses of CCEPs might enable us to identify causal relationships between brain areas during cortical processing, and to develop a new paradigm of effective therapeutic neuromodulation in the future.

Profiling of the leaves and stems of Curcuma longa using LC-ESI-MS and HPLC analysis

  • Gia Han Tran;Hak-Dong Lee;Sun-Hyung Kim;Seok Lee;Sanghyun Lee
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.338-344
    • /
    • 2023
  • Curcuma longa is a plant belonging to the genus Curcuma and is distributed across various Asian regions. This plant is widely known for its rhizomes, which possess a variety of pharmacological properties. However, although the leaves and stems of this plant also contain several health-promoting secondary metabolites, very few studies have characterized these compounds. Therefore, our study sought to quantify the secondary metabolites from the leaves and stems of Curcuma longa L. (LSCL) using liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) and high-performance liquid chromatography (HPLC). Our LC-ESI-MS analyses detected twenty-one phenolic compounds in the LSCL, among which fifteen compounds were detected via HPLC analysis. Four compounds, namely vanillic acid (0.129 mg/g), p-coumaric acid (0.431 mg/g), 4-methylcatechol (0.199 mg/g), and afzelin (0.074 mg/g) were then quantified. These findings suggest that LSCL is rich in secondary metabolites and holds potential as a valuable resource for the development of functional and nutritional supplements in the future.

The Study on the Effect of the 30's Females Forehead muscular-cutaneous (by SUKI® intervention) (30대 여성의 이마근피에 미치는 영향 연구(SUKI®중재에 의한))

  • Jeon, Jong-Mo;Hong, Seong-Gyun
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.5
    • /
    • pp.194-201
    • /
    • 2022
  • This study purpose was to know the effects 30 aged females forehead ms by SUKI intervention(4weeks). Total tested group were 18 persons, It used for SUKI intervention of SUKI process C1, SUKI process C2, SUKI process C3, SUKI process C4 were adopted three times a week in 4 weeks. The research conclusion like this. EG was a significant difference in forehead ms. Therefore, to maintaining elasticity on forehead ms. showed as some research of SUKI intervention effects for the forehead ms(p<.05). In this study, even though limited, it was judged that wrinkles due to a decrease in elasticity of the forehead ms located on the upper surface of a woman's face in her 30s could have a profound effect on women's external appearance, so SUKI intervention was applied. In addition, the role of the elastic on the forehead ms was to suggest an alternative semester method that can effectively control the management of external appearance by managing which it suitable for the life cycle of women in their 30s. In conclusion, we hope that in the future, various experiments will be used as new research data on how to prevent females facial skin beauty and wrinkles and help improve elasticity of facial ms around the face.

Defects and Grain Boundary Properties of ZnO with Mn3O4 Contents (Mn3O4 함량에 따른 ZnO의 결함과 입계 특성)

  • Hong, Youn-Woo;Shin, Hyo-Soon;Yeo, Dong-Hun;Kim, Jin-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.12
    • /
    • pp.962-968
    • /
    • 2011
  • In this study, we investigated the effects of Mn dopant (0.1~3.0 at% $Mn_3O_4$ sintered at 1000$^{\circ}C$ for 1 h in air) on the bulk trap (i.e. defect) and grain boundary properties of ZnO, ZM(0.1~3.0) using admittance spectroscopy (AS), and impedance-modulus spectroscopy (IS & MS). As a result, three kinds of defect were found below the conduction band edge of ZnO as 0.09~0.14 eV (attractive coulombic center), 0.22~25 eV ($Zn^{{\cdot}{\cdot}}_i$), and 0.32~0.33 eV ($V^{\cdot}_o$). The oxygen vacancy increased with Mn doping. In ZM, an electrically single grain boundary as double Schottky barrier was formed with 0.82~1.0 eV of activation energies by IS & MS. We also find out that the barriers of grain boundary of Mn-doped ZnO (${\alpha}$-factor=0.13) were more stabilized and homogenized with temperature compared to pure ZnO.

Effect of Sintering Temperature and Sb/Bi Ratio on Microstructure and Grain Boundary Properties of ZnO-Bi2O3-Sb2O3-Co3O4 Varistor (소결온도와 Sb/Bi 비가 ZnO-Bi2O3-Sb2O3-Co3O4 바리스터의 미세구조와 입계 특성에 미치는 영향)

  • Hong, Youn-Woo;Shin, Hyo-Soon;Yeo, Dong-Hun;Kim, Jin-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.12
    • /
    • pp.969-976
    • /
    • 2011
  • In this study we aims to evaluate the effects of 1/3 mol% $Co_3O_4$ addition on the reaction, microstructure development, resultant electrical properties, and especially the bulk trap and grain boundary properties of $ZnO-Bi_2O_3-Sb_2O_3$ (Sb/Bi=2.0, 1.0, and 0.5) system (ZBS). The samples were prepared by conventional ceramic process, and characterized by XRD, density, SEM, I-V, impedance and modulus spectroscopy (IS & MS) measurement. In addition of $Co_3O_4$ in $ZnO-Bi_2O_3-Sb_2O_3$ (ZBSCo), the phase development, density, and microstructure were controlled by Sb/Bi ratio. Pyrochlore on cooling was reproduced in all systems. The more homogeneous microstructure was obtained in ZBSCo (Sb/Bi=1.0) system. In ZBSCo, the varistor characteristics were improved drastically (non-linear coefficient ${\alpha}$=23~50) compared to ZBS. Doping of $Co_3O_4$ to ZBS seemed to form $V^{\cdot}_o$(0.33 eV) as dominant defect. From IS & MS, especially the grain boundary of Sb/Bi=0.5 system is composed of electrically single barrier (0.93 eV) and somewhat sensitive to ambient oxygen with temperature.

Applications of Tandem Mass Spectrometry in the Structure Determination of Permethylated Sialic Acid-containing Oligosaccharides

  • Yoo, Eun-Sun;Yoon, In-Mo
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.9
    • /
    • pp.1347-1353
    • /
    • 2005
  • Sets of sialic acid-containing trisaccharides having different internal and terminal linkages have been synthesized to develop a sensitive method for analysis of the reducing terminal linkage positions. The trisaccharides, sialyl($\alpha$ 2-3)Gal($\beta$ 1-3)GalNAc and sialyl($\alpha$ 2-3)Gal($\beta$ 1-X)GlcNAc where X=3, 4 and 6, were synthesized and examined using electrospray ionization (ESI)-collision induced dissociation (CID) tandem mass spectrometry (MS/MS). The compounds chosen for this study are related to terminal groups likely to be found on polylactosamine-like glycoproteins and glycolipids which occur on the surface of mammalian cells. The purpose of this study is to develop tandem mass spectrometral methods to determine detailed carbohydrate structures on permethylated or partially methylated oligosaccharides for future applications on biologically active glycoconjugates and to exploit a faster method of synthesizing a series of structural isomeric oligosaccharides to be used for further mass spectrometry and instrumental analysis.