Browse > Article
http://dx.doi.org/10.4313/JKEM.2011.24.12.969

Effect of Sintering Temperature and Sb/Bi Ratio on Microstructure and Grain Boundary Properties of ZnO-Bi2O3-Sb2O3-Co3O4 Varistor  

Hong, Youn-Woo (Future Convergence Ceramic Division, Korea Institute of Ceramic Engineering and Technology)
Shin, Hyo-Soon (Future Convergence Ceramic Division, Korea Institute of Ceramic Engineering and Technology)
Yeo, Dong-Hun (Future Convergence Ceramic Division, Korea Institute of Ceramic Engineering and Technology)
Kim, Jin-Ho (School of Materials Science and Engineering, Kyungpook National University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.24, no.12, 2011 , pp. 969-976 More about this Journal
Abstract
In this study we aims to evaluate the effects of 1/3 mol% $Co_3O_4$ addition on the reaction, microstructure development, resultant electrical properties, and especially the bulk trap and grain boundary properties of $ZnO-Bi_2O_3-Sb_2O_3$ (Sb/Bi=2.0, 1.0, and 0.5) system (ZBS). The samples were prepared by conventional ceramic process, and characterized by XRD, density, SEM, I-V, impedance and modulus spectroscopy (IS & MS) measurement. In addition of $Co_3O_4$ in $ZnO-Bi_2O_3-Sb_2O_3$ (ZBSCo), the phase development, density, and microstructure were controlled by Sb/Bi ratio. Pyrochlore on cooling was reproduced in all systems. The more homogeneous microstructure was obtained in ZBSCo (Sb/Bi=1.0) system. In ZBSCo, the varistor characteristics were improved drastically (non-linear coefficient ${\alpha}$=23~50) compared to ZBS. Doping of $Co_3O_4$ to ZBS seemed to form $V^{\cdot}_o$(0.33 eV) as dominant defect. From IS & MS, especially the grain boundary of Sb/Bi=0.5 system is composed of electrically single barrier (0.93 eV) and somewhat sensitive to ambient oxygen with temperature.
Keywords
ZnO varistor; $Co_3O_4$; Sintering; Electrical properties; Impedance spectroscopy;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Y. W Hong, H. S. Shin, D. H. Yeo, J. H. Kim, and J. H. Kim, J. KIEEME, 22, 941 (2009).
2 Y. W. Hong, H. S. Shin, D. H. Yeo, and J. H. Kim, J. KIEEME, 23, 368 (2010).
3 Y. W. Hong, H. S. Shin, D. H. Yeo, and J. H. Kim, J. KIEEME, 23, 942 (2010).
4 H. R. Philipp, Materials Science Research, Tailoring Multiphase and Composite Ceramics (eds. R. E. Tressler, G. L. Messing, C. G. Pantano, and R. E. Newnham) (Prenum Press, New York/London, 1987) p. 481.
5 K. Eda, IEEE Elec. Insulation. Mag., 5, 28 (1989).
6 R. Einzinger, Ann. Rev. Mater. Sci., 17, 299 (1987).   DOI
7 L. M. Levinson and H. R. Philipp, Am. Ceram. Soc. Bull., 65, 639 (1986).
8 Y. W. Hong, Bull. KIEEME, 24, 3 (2011).
9 M. Inada and M. Matsuoka, Advances in Ceramics (American Ceramic Society, Columbus, 1983) p. 91.
10 M. Inada,, Jpn. J. Appl. Phys., 18, 1439 (1979).   DOI
11 J. Kim, T. K. Kimura, and T. Yamaguchi, J. Am. Ceram. Soc., 72, 1390 (1989).   DOI
12 A. Mergen and W. E. Lee, J. Eur. Ceram. Soc., 17, 1049 (1997).   DOI
13 Y. W. Hong and J. H. Kim, J. Kor. Ceram. Soc., 37, 651 (2000).
14 Y. W. Hong, H. S. Shin, D. H. Yeo, J. H. Kim, and J. H. Kim, J. KIEEME, 21, 738 (2008).
15 L. Karanovic, D. Poleti, and D. Vasovic, Mater. Lett., 18, 191 (1994).   DOI
16 F. Greuter and G. Blatter, Semicond. Sci. Technol., 5, 111 (1990).   DOI
17 Y. W. Hong and J. H. Kim, Ceram. Int., 30, 1307 (2004).   DOI
18 J. Han, P. Q. Mantas, and A. M. R. Senos, J. Euro. Ceram. Soc., 22, 49 (2002).   DOI
19 M. H. Sukker and H. L. Tuller, Advances in Ceramics (American Ceramic Society, Columbus, 1983) p. 71.
20 G. D. Mahan, J. Appl. Phys., 54, 3825 (1983).   DOI
21 K. A. Abdullah, A. Bui, and A. Loubiere, J. Appl. Phys., 69, 4046 (1991).   DOI
22 M. Andres-Verges and A. R. West, J. Electroceram., 1, 125 (1997).   DOI
23 T. K. Gupta, J. Am. Ceram. Soc., 73, 1817 (1990).   DOI
24 D. R. Clarke, J. Am. Ceram. Soc., 82, 485 (1999).