• Title/Summary/Keyword: Future Forecast

Search Result 596, Processing Time 0.028 seconds

Development of Data Visualized Web System for Virtual Power Forecasting based on Open Sources based Location Services using Deep Learning (오픈소스 기반 지도 서비스를 이용한 딥러닝 실시간 가상 전력수요 예측 가시화 웹 시스템)

  • Lee, JeongHwi;Kim, Dong Keun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.8
    • /
    • pp.1005-1012
    • /
    • 2021
  • Recently, the use of various location-based services-based location information systems using maps on the web has been expanding, and there is a need for a monitoring system that can check power demand in real time as an alternative to energy saving. In this study, we developed a deep learning real-time virtual power demand prediction web system using open source-based mapping service to analyze and predict the characteristics of power demand data using deep learning. In particular, the proposed system uses the LSTM(Long Short-Term Memory) deep learning model to enable power demand and predictive analysis locally, and provides visualization of analyzed information. Future proposed systems will not only be utilized to identify and analyze the supply and demand and forecast status of energy by region, but also apply to other industrial energies.

A Detecting Technique for the Climatic Factors that Aided the Spread of COVID-19 using Deep and Machine Learning Algorithms

  • Al-Sharari, Waad;Mahmood, Mahmood A.;Abd El-Aziz, A.A.;Azim, Nesrine A.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.6
    • /
    • pp.131-138
    • /
    • 2022
  • Novel Coronavirus (COVID-19) is viewed as one of the main general wellbeing theaters on the worldwide level all over the planet. Because of the abrupt idea of the flare-up and the irresistible force of the infection, it causes individuals tension, melancholy, and other pressure responses. The avoidance and control of the novel Covid pneumonia have moved into an imperative stage. It is fundamental to early foresee and figure of infection episode during this troublesome opportunity to control of its grimness and mortality. The entire world is investing unimaginable amounts of energy to fight against the spread of this lethal infection. In this paper, we utilized machine learning and deep learning techniques for analyzing what is going on utilizing countries shared information and for detecting the climate factors that effect on spreading Covid-19, such as humidity, sunny hours, temperature and wind speed for understanding its regular dramatic way of behaving alongside the forecast of future reachability of the COVID-2019 around the world. We utilized data collected and produced by Kaggle and the Johns Hopkins Center for Systems Science. The dataset has 25 attributes and 9566 objects. Our Experiment consists of two phases. In phase one, we preprocessed dataset for DL model and features were decreased to four features humidity, sunny hours, temperature and wind speed by utilized the Pearson Correlation Coefficient technique (correlation attributes feature selection). In phase two, we utilized the traditional famous six machine learning techniques for numerical datasets, and Dense Net deep learning model to predict and detect the climatic factor that aide to disease outbreak. We validated the model by using confusion matrix (CM) and measured the performance by four different metrics: accuracy, f-measure, recall, and precision.

Mid- and Long-term Forecast of Forest Biomass Energy in South Korea, and Analysis of the Alternative Effects of Fossil Fuel (한국의 산림바이오매스에너지 중장기 수요-공급전망과 화석연료 대체효과 분석)

  • Lee, Seung-Rok;Han, Hee;Chang, Yoon-Seong;Jeong, Hanseob;Lee, Soo Min;Han, Gyu-Seong
    • New & Renewable Energy
    • /
    • v.18 no.3
    • /
    • pp.1-9
    • /
    • 2022
  • This study analyzed the anticipated supply-and-demand of forest biomass energy (through wood pellets) until 2050, in South Korea. Comparing the utilization rates of forest resources of five countries (United Kingdom, Germany, Finland, Japan, and S. Korea), it was found that S. Korea does not nearly utilize its forest resources for energy purposes. The total demand for wood pellets in S. Korea (based on a power generation efficiency of 38%) was predicted to be 3,629 and 4,371 thousand tons in 2034 and 2050, respectively. The anticipated total wood pellet power generation ratio to target power consumption is 1.13% (5,745 GWh), 1.17% (6,336 GWh), and 1.25% (7,631 GWh) in 2020, 2030, and 2050, respectively. Low value-added forest residues left unattended in forests are called "Unused Forest Biomass" in S. Korea. From the analysis, the total annual potential amount of raw material, sustainably collectible amount, and available amount of wood pellet in 2050 were estimated to be 6,877, 4,814, and 3,370 thousand tons, respectively. The rate of contribution to Nationally Determined Contributions was up to 0.64%. Through this study, the authors found that forest biomass energy will contribute to a carbon neutral society in the near future at the national level.

Development of Levee Safety Revaluation for Satellite Images (위성 이미지를 활용한 제방 안정성 평가 기법 개발)

  • Bang, Young Jun;Lee, Seung Oh
    • Journal of Korean Society of Disaster and Security
    • /
    • v.15 no.3
    • /
    • pp.1-14
    • /
    • 2022
  • Recently, the risk of water disasters are increasing due to climate change and the aging of river levees. Existing conventional river embankment inspections have many limitations due to the consumption of a lot of manpower and budget. Thus, it is necessary to establish a new monitoring and forecast/warning method for effective flood response. This study proposes the river levee health monitoring system by analyzing the relationship between river levee deformation and hydrological factors using Sentinel-1. The variance index calculated in this study was classified into 4 grades. And the levees collapse section was judged to be a high vulnerable point in which the variance rapidly increased based on the result of the rapid increase in soil moisture. In the future, it is expected that it will be possible to advance levee maintenance technology and improve national disaster management through the advancement of the existing levee management system and automated monitoring through the forensic method that combines remote technology.

Water consumption forecasting and pattern classification according to demographic factors and automated meter reading (인구통계학적 요인 및 원격검침 자료를 활용한 가정용 물 사용패턴 분류 및 물 사용량 예측 연구)

  • Kim, Kibum;Park, Haekeum;Kim, Taehyeon;Hyung, Jinseok;Koo, Jayong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.36 no.3
    • /
    • pp.149-165
    • /
    • 2022
  • The water consumption data of individual consumers must be analyzed and forecast to establish an effective water demand management plan. A k-mean cluster model that can monitor water use characteristics based on hourly water consumption data measured using automated meter reading devices and demographic factors is developed in this study. In addition, the quantification model that can estimate the daily water consumption is developed. K-mean cluster analysis based on the four clusters shows that the average silhouette coefficient is 0.63, also the silhouette coefficients of each cluster exceed 0.60, thereby verifying the high reliability of the cluster analysis. Furthermore, the clusters are clearly classified based on water usage and water usage patterns. The correlation coefficients of four quantification models for estimating water consumption exceed 0.74, confirming that the models can accurately simulate the investigated demographic data. The statistical significance of the models is considered reasonable, hence, they are applicable to the actual field. Because the use of automated smart water meters has become increasingly popular in recent year, water consumption has been metered remotely in many areas. The proposed methodology and the results obtained in this study are expected to facilitate improvements in the usability of smart water meters in the future.

An Application of Machine Learning in Retail for Demand Forecasting

  • Muhammad Umer Farooq;Mustafa Latif;Waseemullah;Mirza Adnan Baig;Muhammad Ali Akhtar;Nuzhat Sana
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.9
    • /
    • pp.1-7
    • /
    • 2023
  • Demand prediction is an essential component of any business or supply chain. Large retailers need to keep track of tens of millions of items flows each day to ensure smooth operations and strong margins. The demand prediction is in the epicenter of this planning tornado. For business processes in retail companies that deal with a variety of products with short shelf life and foodstuffs, forecast accuracy is of the utmost importance due to the shifting demand pattern, which is impacted by an environment of dynamic and fast response. All sectors strive to produce the ideal quantity of goods at the ideal time, but for retailers, this issue is especially crucial as they also need to effectively manage perishable inventories. In light of this, this research aims to show how Machine Learning approaches can help with demand forecasting in retail and future sales predictions. This will be done in two steps. One by using historic data and another by using open data of weather conditions, fuel, Consumer Price Index (CPI), holidays, any specific events in that area etc. Several machine learning algorithms were applied and compared using the r-squared and mean absolute percentage error (MAPE) assessment metrics. The suggested method improves the effectiveness and quality of feature selection while using a small number of well-chosen features to increase demand prediction accuracy. The model is tested with a one-year weekly dataset after being trained with a two-year weekly dataset. The results show that the suggested expanded feature selection approach provides a very good MAPE range, a very respectable and encouraging value for anticipating retail demand in retail systems.

An Application of Machine Learning in Retail for Demand Forecasting

  • Muhammad Umer Farooq;Mustafa Latif;Waseem;Mirza Adnan Baig;Muhammad Ali Akhtar;Nuzhat Sana
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.8
    • /
    • pp.210-216
    • /
    • 2023
  • Demand prediction is an essential component of any business or supply chain. Large retailers need to keep track of tens of millions of items flows each day to ensure smooth operations and strong margins. The demand prediction is in the epicenter of this planning tornado. For business processes in retail companies that deal with a variety of products with short shelf life and foodstuffs, forecast accuracy is of the utmost importance due to the shifting demand pattern, which is impacted by an environment of dynamic and fast response. All sectors strive to produce the ideal quantity of goods at the ideal time, but for retailers, this issue is especially crucial as they also need to effectively manage perishable inventories. In light of this, this research aims to show how Machine Learning approaches can help with demand forecasting in retail and future sales predictions. This will be done in two steps. One by using historic data and another by using open data of weather conditions, fuel, Consumer Price Index (CPI), holidays, any specific events in that area etc. Several machine learning algorithms were applied and compared using the r-squared and mean absolute percentage error (MAPE) assessment metrics. The suggested method improves the effectiveness and quality of feature selection while using a small number of well-chosen features to increase demand prediction accuracy. The model is tested with a one-year weekly dataset after being trained with a two-year weekly dataset. The results show that the suggested expanded feature selection approach provides a very good MAPE range, a very respectable and encouraging value for anticipating retail demand in retail systems.

Prediction of Traffic Speed in a Container Terminal Using Yard Tractor Operation Data (내부트럭 운영 정보를 이용한 컨테이너 터미널 내 교통 속도예측)

  • Kim, Taekwang;Heo, Gyoungyoung;Lee, Hoon;Ryu, Kwang Ryel
    • Journal of Navigation and Port Research
    • /
    • v.46 no.1
    • /
    • pp.33-41
    • /
    • 2022
  • An important operational goal of a container terminal is to maximize the efficiency of the operation of quay cranes (QCs) that load and/or unload containers onto and from vessels. While the maximization of the efficiency of the QC operation requires minimizing the delay of yard tractors (YT) that transport containers between the storage yard and QCs, the delay is often inevitable because of traffic congestion. In this paper, we propose a method for learning a model that predicts traffic speed in a terminal using only YT operation data, even though the YT traffic is mixed with that of external trucks. Without any information on external truck traffic, we could still make a reasonable traffic forecast because the YT operation data contains information on the YT routes in the near future. The results of simulation experiments showed that the model learned by the proposed method could predict traffic speed with significant accuracy.

Applicability of Artificial Intelligence Techniques to Forecast Rainfall and Flood Damage in Future (미래 강우량 및 홍수피해 전망을 위한 인공지능 기법의 적용성 검토)

  • Lee, Hoyong;Kim, Jongsung;Seo, Jaeseung;Kim, Sameun;Kim, Soojun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.184-184
    • /
    • 2021
  • 2020년의 경우 대기 상층 제트기류가 크게 강화됨에 따라 작은 규모의 저기압의 발달이 평년보다 두 배 이상 증가하였고, 그로 인해 장마가 최대 54일가량 지속되며 1조 371억 원 가량의 대규모 침수피해가 발생하였다. 이와 같이 최근 기후변화로 인한 이상 기후가 빈번하게 발생하고 있으며, 그로 인해 홍수, 태풍과 같은 재난의 강도 및 파급되는 재산피해가 점차 증가하고 있는 추세이다. 따라서 본 연구에서는 기후변화를 고려하여 향후 30년간 강우량 변화 추이를 파악하고, 이에 따라 파급되는 재난피해 규모의 증가 추세를 확인하고자 하였다. 기후변화 시나리오는 IPCC AR6(Intergovernmental Panel on Climate Change - Sixth Assessment Report)에서 제시하고 있는 시나리오 중 극한 시나리오인 SSP5-8.5와 안정화 시나리오인 SSP2-4.5 시나리오를 활용하고자 하였다. GCM(General Circulation Model) 자료는 전 지구적 모형으로 공간적 해상도가 낮은 문제가 있기 때문에, 국내 적용을 위해서는 축소기법을 적용해야 한다. 본 연구에서는 공간적 축소를 위해 통계학적 기법 중 인공지능 기법을 적용하고 Reference data와 종관기상관측(ASOS)의 실측 강우 자료(1905 ~ 2014년)를 통해 학습된 모형의 정확도 검증을 수행하였다. 또한 연 강수량과 연도별 홍수피해의 규모 및 빈도를 확인하여 연도별 강수량 증가에 따른 피해 규모의 증가를 관계식을 도출하였다. 이후 최종적인 축소기법으로 모형을 통해 향후 2050년까지 부산광역시의 예측 강우량을 전망하여 연 강수량의 증가량과 피해 규모의 증가량을 전망해보고자 하였다. 본 연구 결과는 부산광역시의 예방단계 재난관리의 일환으로 적응형 기후변화 대책 수립에 기초 자료로써 활용될 수 있을 것이다.

  • PDF

Research on Selecting Influential Climatic Factors and Optimal Timing Exploration for a Rice Production Forecast Model Using Weather Data

  • Jin-Kyeong Seo;Da-Jeong Choi;Juryon Paik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.7
    • /
    • pp.57-65
    • /
    • 2023
  • Various studies to enhance the accuracy of rice production forecasting are focused on improving the accuracy of the models. In contrast, there is a relative lack of research regarding the data itself, which the prediction models are applied to. When applying the same dependent variable and prediction model to two different sets of rice production data composed of distinct features, discrepancies in results can occur. It is challenging to determine which dataset yields superior results under such circumstances. To address this issue, by identifying potential influential features within the data before applying the prediction model and centering the modeling around these, it is possible to achieve stable prediction results regardless of the composition of the data. In this study, we propose a method to adjust the composition of the data's features in order to select optimal base variables, aiding in achieving stable and consistent predictions for rice production. This method makes use of the Korea Meteorological Administration's ASOS data. The findings of this study are expected to make a substantial contribution towards enhancing the utility of performance evaluations in future research endeavors.